• Исследовательская работа "анализ лекарственных препаратов". Современные методы изучения лекарственных веществ: клинические, физиологические, биохимические и др Методы анализа лс по гф примеры

    30.03.2022

    Методы исследования лекарственных веществ подразделяются на:

    1. физические,

    2. химические,

    3. физико-химические,

    4. биологические.

    Физические методы анализа предусматривают изучение физических свойств вещества, не прибегая к химическим реакциям. К ним относятся: определение растворимости, прозрачности или степени мутности, цветности; определение плотности (для жидких веществ), влажности, температуры плавления, затвердевания, кипения.

    Химические методы исследования основаны на химических реакциях. К ним относятся: определение зольности, реакции среды (рН), характерных числовых показателей масел и жиров (кислотное число, йодное число, число омыления и т. д.). Для целей идентификации лекарственных веществ используют только такие реакции, которые сопровождаются наглядным внешним эффектом, например изменением окраски раствора, выделением газов, выпадением или растворением осадков и т. п. К химическим методам исследования относятся также весовые и объемные методы количественного анализа, принятые в аналитической химии (метод нейтрализации, осаждения, редокс-методы и др.). В последние годы в фармацевтический анализ вошли такие химические методы исследования, как титрование в неводных средах, комплексометрия. Качественный и количественный анализ органических лекарственных веществ, как правило, проводят по характеру функциональных групп в их молекулах.

    С помощью физико-химических методов изучают физические явления, которые происходят в результате химических реакций. Например, в колориметрическом методе измеряют интенсивность окраски в зависимости от концентрации вещества, в кондуктометрическом анализе - измерение электропроводности растворов и т. д.

    К физико-химическим методам относятся: оптические (рефрактометрия, поляриметрия, эмиссионный и флюоресцентный методы анализа, фотометрия, включающая фотоколориметрию и спектрофотометрию, нефелометрия, турбодиметрия), электро - химические (потенциометрический и полярографический методы), хроматографические методы.

    Биологическое это исследование на животных (лягушках, голубей, кошек). Определяются в ЕД. Подвергаются: ЛРС, содержащие сердечные гликозиды, ЛС, содержащие гормоны, ферменты, витамины, антибиотики.

    Оформление экстемпоральные ЛП, ВАЗ, ВАФ осуществляют согласно приказу МЗ РФ № 376 и методические указания о единым оформление.

    Этикетки для оформления лекарств, приготовляемых индивидуально и в порядке внутриаптечной заготовки и фасовки, в зависимости от способа их применения, подразделяются на:

    ü этикетки для лекарств внутреннего употребления с надписью "Внутреннее", "Внутреннее детское";

    ü этикетки для лекарств наружного применения с надписью "Наружное";

    ü этикетки на лекарства для парентерального введения с надписью "Для инъекций";

    ü этикетки на глазные лекарства с надписью "Глазные капли", "Глазная мазь".

    На всех этикетках для оформления лекарств, приготовленных индивидуально и в порядке внутриаптечной заготовки и фасовки, должны быть типографским способом отпечатаны предупредительные надписи, соответствующие каждой лекарственной форме:

    ü для микстур - "хранить в прохладном и защищенном от света месте", "перед употреблением взбалтывать";

    ü для мазей, глазных мазей и глазных капель - "хранить в прохладном и защищенном от света месте";

    ü для капель внутреннего употребления - "хранить в защищенном от света месте";

    ü для инъекций - "стерильно".

    Все этикетки обязательно должны содержать предупредительную надпись "беречь от детей".

    Лекарственная форма указывается от руки.

    На всех этикетках для оформления лекарств, приготовляемых в порядке внутриаптечной заготовки и фасовки, должны быть следующие обозначения:

    ü эмблема (чаша со змеей);

    ü местонахождение аптечного учреждения (предприятия);

    ü наименование аптечного учреждения (предприятия);

    ü способ применения (внутреннее, наружное, для инъекций) или лекарственной формы (мазь, глазные капли, капли в нос и т.д.);

    ü дата приготовления...;

    ü годен до...;

    ü серия...;

    ü "беречь от детей".

    Текст аптечных этикеток, предназначенных для оформления лекарств, приготовляемых индивидуально, а также способ применения должны быть напечатаны на русском или местном языке.

    Текст аптечных этикеток, предназначенных для оформления лекарств, приготовляемых в порядке внутриаптечной заготовки и фасовки, а также их наименования и необходимые предупредительные надписи рекомендуется печатать типографским способом.

    Предупредительные надписи, наклеиваемые на лекарства, имеют следующий текст и сигнальные цвета:

    ü "перед употреблением взбалтывать" - на белом фоне зеленый шрифт;

    ü "хранить в защищенном от света месте" - на синем фоне белый шрифт;

    ü "хранить в прохладном месте" - на голубом фоне белый шрифт;

    ü "детское" - на зеленом фоне белый шрифт;

    ü "для новорожденных" - на зеленом фоне белый шрифт;

    ü "обращаться с осторожностью" - на белом фоне красный шрифт;

    ü "сердечное" - на оранжевом фоне белый шрифт;

    ü "беречь от огня" - на красном фоне белый шрифт.

    Особо ядовитые вещества (<...>, цианид и оксицианид ртути) оформляются одной предупредительной этикеткой черного цвета с обозначением белым шрифтом названия ядовитого лекарственного средства на русском (или местном) языке с изображением скрещенных костей и черепа и надписью "яд" и "обращаться осторожно" в соответствии с действующим приказом.

    Оформление лекарств, приготовляемых в аптечных учреждениях (предприятиях) различных форм собственности, в соответствии с представленными Едиными правилами оформления лекарств способствует улучшению культуры лекарственного обеспечения населения, усилению контроля за сроками годности приготовленных лекарств и их ценой, привлечению к ним внимания с целью исключения возможных ошибок при их использовании.

    Определение тарифов

    В оплату включается:

    1. Стоимость ЛС

    2. Стоимость вспомогательных материалов

    3. Стоимость посуды

    4. Издержки

    Утверждается тарифы приказом аптеки.

    Исходными данными для определения издержек производства служат данные бухгалтерского учета и отчетности аптеки за истекший месяц.

    Количество условных производственных единиц отражает полную трудоемкость работы по изготовлению одной единицы лекарственного средства и ИМН.

    За одну производственную единицу условно принята работа, выполняемая в течении 10 мин.

    За одну единицу изготовления стерильных и жидких лекарственных форм, мазей принимается лекарственное средство, полностью оформленное в соответствии с действующими документами и предназначенное для отпуска.

    К стерильным лекарственным формам относятся растворы для инъекционного применения, инфузнные растворы, офтальмологические растворы для орошения, растворы и масла для новорожденных.

    К ЖЛФ относятся растворы и капли для внутреннего употребления и наружного применения, масла, очищенная вода.

    К мазям относятся пасты, линименты, пластыри жидкие, суспензии, эмульсии.

    За одну единицу порошков и суппозиториев условно принята лекарственная форма с расфасовкой на 10 доз.


    Похожая информация.


    Вступление

    Глава 1. Основные принципы фармацевтического анализа

    1.1 Критерии фармацевтического анализа

    1.2 Ошибки, возможные при проведении фармацевтического анализа

    1.3 Общие принципы испытаний подлинности лекарственных веществ

    1.4 Источники и причины недоброкачественности лекарственных веществ

    1.5 Общие требования к испытаниям на чистоту

    1.6 Методы фармацевтического анализа и их классификация

    Глава 2. Физические методы анализа

    2.1 Проверка физических свойств или измерение физических констант лекарственных веществ

    2.2 Установление рН среды

    2.3 Определение прозрачности и мутности растворов

    2.4 Оценка химических констант

    Глава 3. Химические методы анализа

    3.1 Особенности химических методов анализа

    3.2 Гравиметрический (весовой) метод

    3.3 Титриметрические (объемные) методы

    3.4 Газометрический анализ

    3.5 Количественный элементный анализ

    Глава 4. Физико-химические методы анализа

    4.1 Особенности физико-химических методов анализа

    4.2 Оптические методы

    4.3 Абсорбционные методы

    4.4 Методы, основанные на испускании излучения

    4.5 Методы, основанные на использовании магнитного поля

    4.6 Электрохимические методы

    4.7 Методы разделения

    4.8 Термические методы анализа

    Глава 5. Биологические методы анализа1

    5.1 Биологический контроль качества лекарственных средств

    5.2 Микробиологический контроль лекарственных средств

    Список использованной литературы

    Вступление

    Фармацевтический анализ это наука о химической характеристике и измерении биологически активных веществ на всех этапах производства: от контроля сырья до оценки качества полученного лекарственного вещества, изучения его стабильности, установления сроков годности и стандартизации готовой лекарственной формы. Фармацевтический анализ имеет свои специфические особенности, отличающие его от других видов анализа. Эти особенности заключаются в том, что анализу подвергают вещества различной химйческой природы: неорганические, элементорганические, радиоактивные, органические соединения от простых алифатических до сложных природных биологически активных веществ. Чрезвычайно широк диапазон концентраций анализируемых веществ. Объектами фармацевтического анализа являются не только индивидуальные лекарственные вещества, но и смеси, содержащие различное число компонентов. Количество лекарственных средств с каждым годом увеличивается. Это вызывает необходимость разработки новых способов анализа.

    Способы фармацевтического анализа нуждаются в систематическом совершенствовании в связи с непрерывным повышением требований к качеству лекарственных средств, причем растут требования как к степени чистоты лекарственных веществ, так и к количественному содержанию. Поэтому необходимо широкое использование не только химических, но и более чувствительных физико-химических методов для оценки качества лекарств.

    К фармацевтическому анализу предъявляют высокие требования. Он должен быть достаточно специфичен и чувствителен, точен по отношению к нормативам, обусловленным ГФ XI, ВФС, ФС и другой НТД, выполняться в короткие промежутки времени с использованием минимальных количеств испытуемых лекарственных препаратов и реактивов.

    Фармацевтический анализ в зависимости от поставленных задач включает различные формы контроля качества лекарств: фармакопейный анализ, постадийный контроль производства лекарственных средств, анализ лекарственных форм индивидуального изготовления, экспресс-анализ в условиях аптеки и биофармацевтический анализ.

    Составной частью фармацевтического анализа является фармакопейный анализ. Он представляет собой совокупность способов исследования лекарственных препаратов и лекарственных форм, изложенных в Государственной фармакопее или другой нормативно-технической документации (ВФС, ФС). На основании результатов, полученных при выполнении фармакопейного анализа, делается заключение о соответствии лекарственного средства требованиям ГФ или другой нормативно-технической документации. При отклонении от этих требований лекарство к применению не допускают.

    Заключение о качестве лекарственного средства можно сделать только на основании анализа пробы (выборки). Порядок ее отбора указан либо в частной статье, либо в общей статье ГФ XI (вып. 2). Отбор пробы производят только из неповрежденных укупоренных и упакованных в соответствии с требованиями НТД упаковочных единиц. При этом должны строго соблюдаться требования к мерам предосторожности работы с ядовитыми и наркотическими лекарственными средствами, а также к токсичности, огнеопасности, взрывоопасности, гигроскопичности и другим свойствам лекарств. Для испытания на соответствие требованиям НТД проводят многоступенчатый отбор проб. Число ступеней определяется видом упаковки. На последней ступени (после контроля по внешнему виду) берут пробу в количестве, необходимом для четырех полных физико-химических анализов (если проба отбирается для контролирующих организаций, то на шесть таких анализов).

    Из расфасовки "ангро" берут точечные пробы, взятые в равных количествах из верхнего, среднего и нижнего слоев каждой упаковочной единицы. После установления однородности все эти пробы смешивают. Сыпучие и вязкие лекарственные средства отбирают пробоотборником, изготовленным из инертного материала. Жидкие лекарственные средства перед отбором проб тщательно перемешивают. Если это делать затруднительно, то отбирают точечные пробы из разных слоев. Отбор выборок готовых лекарственных средств осуществляют в соответствии с требованиями частных статей или инструкций по контролю, утвержденных МЗ РФ.

    Выполнение фармакопейного анализа позволяет установить подлинность лекарственного средства, его чистоту, определить количественное содержание фармакологически активного вещества или ингредиентов, входящих в состав лекарственной формы. Несмотря на то, что каждый из этих этапов имеет свою конкретную цель, их нельзя сматривать изолированно. Они взаимосвязаны и взаимно дополняют друг друга. Так, например, температура плавления, растворимость, рН среды водного раствора и т.д. являются критериями как подлинности, так и чистоты лекарственного вещества.

    Глава 1. Основные принципы фармацевтического анализа

    1.1 Критерии фармацевтического анализа

    На различных этапах фармацевтического анализа в зависимости от поставленных задач имеют значение такие критерии, как избирательность, чувствительность, точность, время, затраченное на выполнение анализа, израсходованное количество анализируемого препарата (лекарственной формы).

    Избирательность метода очень важна при проведении анализа смесей веществ, поскольку дает возможность получать истинные значения каждого из компонентов. Только избирательные методики анализа позволяют определять содержание основного компонента в присутствии продуктов разложения и других примесей.

    Требования к точности и чувствительности фармацевтического анализа зависят от объекта и цели исследования. При испытании степени чистоты препарата используют методики, отличающиеся высокой чувствительностью, позволяющие устанавливать минимальное содержание примесей.

    При выполнении постадийного контроля производства, а также при проведении экспресс-анализа в условиях аптеки важную роль имеет фактор времени, которое затрачивается на выполнение анализа. Для этого выбирают методы, позволяющие провести анализ в наиболее короткие промежутки времени и вместе с тем с достаточной точностью.

    При количественном определении лекарственного вещества используют метод, отличающийся избирательностью и высокой точностью. Чувствительностью метода пренебрегают, учитывая возможность выполнения анализа с большой навеской препарата.

    Мерой чувствительности реакции является предел обнаружения. Он означает наименьшее содержание, при котором по данной методике можно обнаружить присутствие определяемого компонента с заданной доверительной вероятностью. Термин ""предел обнаружения" введен вместо такого понятия, как "открываемый минимум", им пользуются также взамен термина "чувствительность". На чувствительность качественных реакций оказывают влияние такие факторы, как объемы растворов реагирующих компонентов, концентрации реактивов, рН среды, температура, продолжительность опыта. Это следует учитывать при разработке методик качественного фармацевтического анализа. Для установления чувствительности реакций все шире используют показатель поглощения (удельный или молярный), устанавливаемый спектрофотометрическим методом. В химическом анализе чувствительность устанавливают по величине предела обнаружения данной реакции. Высокой чувствительностью отличаются физико-химические методы анализа. Наиболее высокочувствительны радиохимические и масс-спектральный методы, позволяющие определять 10-810-9% анализируемого вещества, полярографические и флуориметрические 10-610-9%; чувствительность спектрофотометрических методов Ю-310-6%, потенциометрических 10-2%.

    Термин "точность анализа" включает одновременно два понятия: воспроизводимость и правильность полученных результатов. Воспроизводимость характеризует рассеяние результатов анализа по сравнению со средним значением. Правильность отражает разность между действительным и найденным содержанием вещества. Точность анализа у каждого метода различна и зависит от многих факторов: калибровки измерительных приборов, точности отвешивания или отмеривания, опытности аналитика и т.д. Точность результата анализа не может быть выше, чем точность наименее точного измерения.

    Так, при вычислении результатов титриметрических определений наименее точная цифра количество милли

    В соответствии с ГФ XI методы исследования лекарственных средств подразделяются на физические, физико-химические и химические.

    Физические методы. Включают методы определение температуры плавления, затвердевания, плотности (для жидких веществ), показателя преломления (рефрактометрия), оптического вращения (поляриметрия) и др.

    Физико-химические методы. Их можно разделить на 3 основным группы: электрохимические (полярография, потенциометрия), хромато- графические и спектральным (УФ- и ИК-спектрофотометрия и фотоколориметрия).

    Полярография - метод изучения электрохимических процессов, основанный на установлении зависимости силы тока от напряжения, которое прикладывается к исследуемой системе. Электролиз исследуемых раство- ров проводится в электролизере, одним из электродов которой служит капельный ртутный электрод, а вспомогательным - ртутныш электрод с большой поверхностью, потенциал которого практически не изменяется при прохождении тока небольшой плотности. Полученная полярографическая кривая (полярограмма) имеет вид волны. Вымота волны связана с концентрацией реагирующих веществ. Метод применяется для количественного определения многих органических соединений.

    Потенциометрия - метод определения рН и потенциометрическое титрование.

    Хроматография - процесс разделения смесей веществ, происходящий при их перемещении в потоке подвижной фазы вдоль неподвижного сорбента. Разделение происходит благодаря различию тех или иныгх физико -химических свойств разделяемые веществ, приводящему к неодинаковому взаимодействию их с веществом неподвижной фазы, следовательно, к различию во времени удерживания слоя сорбента.

    По механизму, лежащему в основе разделения, различают адсорбционную, распределительную и ионообменную хроматографию. По способу разделения и применяемой аппаратуре различают хроматографию на колонках, на бумаге в тонком слое сорбента, газовую и жидкостную хроматографию, высокоэффективную жидкостную хроматографию (ВЭЖХ) и др.

    Спектральным методы основаны на избирательном поглощении электромагнитного излучения анализируемым веществом. Различают спектрофотометрические методы, основанным на поглощении веществом монохроматического излучения УФ- и ИК-диапазонов, колориметрические и фотоколориметрические методы, основанным на поглощении веществом немонохроматического излучения видимой части спектра.

    Химические методы. Основаны на использовании химических реакций для идентификации лекарственные средств. Для неорганических лекарственных средств используют реакции на катионы и анионы, для органических - на функциональным группы, при этом применяются только такие реакции, которым сопровождаются наглядным внешним эффектом: изменением окраски раствора, выделением газов, выпадением осадков и т.д.

    С помощью химических методов проводят определение численных показателей масел и эфиров (кислотное число, йодное число, число омыления), характеризующих их доброкачественность.

    К химическим методам количественного анализа лекарственных веществ относятся гравиметрический (весовой) метод, титриметрические (объёмным) методы, включающие кислотно - основное титрование в водных и неводных средах, газометрический анализ и количественный элементный анализ.

    Гравиметрический метод. Из неорганических лекарственных веществ этим методом можно определять сульфаты, переводя их в нераство- римым соли бария, и силикаты, предварительно прокаливая их до диоксида кремния. Возможно применение гравиметрии для анализа препаратов со - лей хинина, алкалоидов, некоторые витаминов и др.

    Титриметрические методы. Это наиболее распространенным в фар - мацевтическом анализе методы, отличающиеся небольшой трудоемкостью и достаточно вымокой точностью. Титриметрические методы можно подразделить на осадительное титрование, кислотно - основное, окислительно - восстановительное, комплексиметрию и нитритометрию. С их помощью количественную оценку производят, проводя определение отдельные элементов или функциональных групп, содержащихся в молекуле лекарственного вещества.

    Осадительное титрование (аргентометрия, меркуриметрия, меркуро- метрия и др.).

    Кислотно - основное титрование (титрование в водной среде, ацидиметрия - использование в качестве титранта кислоты, алкалиметрия - использование для титрования щелочи, титрование в смешанные растворителях, неводное титрование и др.).

    Окислительно-восстановительное титрование (иодометрия, иодхлорометрия, броматометрия, перманганатометрия и др.).

    Комплексиметрия. Метод основан на образовании прочных, растворимых в воде комплексов катионов металлов с трилоном Б или др. комплексонами. Взаимодействие происходит в стехиометрическом соотношении 1:1 независимо от заряда катиона.

    Нитритометрия. Метод основан на реакциях первичных и вторичных ароматических аминов с нитритом натрия, которые используют в качестве титранта. Первичные ароматические амины образуют с нитритом натрия в кислой среде диазосоединение, а вторичным ароматические амины в этих условиях образуют нитрозосоединения

    Газометрический анализ. Имеет ограниченное применение в фармацевтическом анализе. Объектами этого анализа являются два газообразныгх препарата: кислород и циклопропан. Сущность газометрического определения заключается во взаимодействии газов с поглотительными растворами.

    Количественный элементный анализ. Этот анализ используют для количественного определения органических и элементорганических со - единений, содержащих азот, галогены, серу, а также мы1шьяк, висмут, ртуть, сурьму и др. элементы.

    Биологические методы контроля качества лекарственных веществ. Биологическую оценку качества ЛB проводят по их фармакологической активности или токсичности. Биологические микробиологические методы применяют в тех случаях, когда с помощью физических, химических и физико-химических методов нельзя сделать заключение о доброкачественности ЛC. Биологические испытания проводят на животных кошки, собаки, голуби, кролики, лягушки и др.), отдельных изолированных органах (рог матки, часть кожи) и группах клеток (форменные элементы крови, штаммы микроорганизмов и др.). Биологическую активность устанавливают, как правило, путем сравнения действия испытуемых и стандартных образцов.

    Испытаниям на микробиологическую чистоту подвергают не стерилизуемые в процессе производства ЛП (таблетки, капсулы, гранулы, растворы, экстракты, мази и др.). Эти испытания имеют своей целью определение состава и количества имеющейся в ЛФ микрофлоры. При этом устанавливается соответствие нормам, ограничивающим микробную обсемененность (контаминацию). Испытание включает количественное определение жизнеспособных бактерий и грибов, выявление некоторых видов микроорганизмов, кишечной флоры и стафилококков. Испытание выполняют в асептических условиях в соответствии с требованиями ГФ XI (в. 2, с. 193) двухслойным агаровым методом в чашках Петри.

    Испытание на стерильность основано на доказательстве отсутствия в ЛС жизнеспособных микроорганизмов любого вида и является одним из важнейших показателей безопасности ЛС. Этим испытаниям подвергаются все ЛП для парентерального введения, глазные капли, мази и т.д. Для контроля стерильности применяют биогликолевую и жидкую среду Сабуро, используя метод прямого посева на питательные среды. Если ЛС обладает выраженным антимикробным действием или разлито в емкости более 100 мл, то используют метод мембранной фильтрации (ГФ, в. 2, с. 187).

    Фармацевтический анализ (ФА). Он является основой фармацевтической химии и имеет свои особенности, отличающие его от других видов анализа. Они заключаются в том, что анализу подвергаются вещества различной химической природы: неорганические, элементоорганические, радиоактивные, органические соединения от простых алифатических до сложных природных БАВ. Чрезвычайно широк диапазон концентраций анализируемых веществ. Объектами фармацевтического анализа являются не только индивидуальные лекарственные вещества, но и смеси, содержащие различное число компонентов.

    Ежегодное пополнение арсенала лекарственных средств вызывает необходимость разработки новых способов их анализа. Способы фармацевтического анализа нуждаются в систематическом совершенствовании в связи с непрерывным повышением требований как к качеству лекарственных средств, так и к количественному содержанию в них БАВ. Вот почему к фармацевтическому анализу предъявляют высокие требования. Он должен быть достаточно специфичен и чувствителен, точен по отношению к нормативным требованиям Государственной фармакопеи X и XI и другой НТД (ФС, ГОСТ), выполняться в короткие промежутки времени с использованием минимальных количеств испытуемых препаратов и реактивов.

    В зависимости от поставленных задач фармацевтический анализ включает различные формы контроля качества лекарственных средств: фармакопейный анализ; постадийный контроль производства лекарств; анализ лекарственных форм индивидуального изготовления; экспресс-анализ в условиях аптеки и биофармацевтический анализ. Составной его частью является фармакопейный анализ, который представляет собой совокупность способов исследований лекарственных препаратов и лекарственных форм, изложенных в Государственной фармакопее или другой НТД (ФС, ФСП, ГОСТ). На основании результатов, полученных при выполнении фармакопейного анализа, делается заключение о соответствии лекарственного средства требованиям Государственной фармакопеи или другой НТД. При отклонении от этих требований лекарство не допускается к применению.

    Химический анализ растительного сырья. По технике выполнения и характеру получаемых результатов химические реакции делят на несколько групп: качественные, микрохимические и гистохимические, микросублимация.

    Для установления подлинности лекарственного растительного сырья используют простейшие качественные реакции и хроматографические пробы на действующие и сопутствующие вещества. Методика изложена в соответствующей нормативной документации на исследуемый вид сырья в разделе «Качественные реакции».

    Качественные реакции выполняют на сухом сырье с такими видами сырья: кора дуба, калины, крушины, корневища бадана, корневища и корни девясила, корни одуванчика, алтея, женьшеня, барбариса, цветки липы, семена льна, склероции спорыньи (всего для 12 видов сырья).

    В основном качественные реакции проводят с извлечением (вытяжкой) из лекарственного растительного сырья.

    Исходя из свойств биологически активных веществ, их извлекают из сырья водой, спиртом различной концентрации или органическим растворителем, реже с добавлением щелочи или кислоты.

    Водное извлечение готовят из сырья, содержащего гликозиды, полисахариды, сапонины, фенологликозиды, антрагликозиды, дубильные вещества. Подкисленной водой извлекают из сырья алкалоиды в виде солей.

    Большую группу биологически активных веществ (сердечные гликозиды, кумарины, лигнаны, флавоноиды) извлекают этиловым и метиловым спиртом различной концентрации.

    Если реакция достаточно специфична и чувствительна, то ее проводят с неочищенным экстрактом из сырья.

    К таким реакциям относятся:

    общеалкалоидные осадочные реакции;

    реакции с раствором хлорида алюминия на флавоноиды (трава зверобоя, горца птичьего, горца перечного и др.);

    проба Синода на флавоноиды в цветках бессмертника;

    реакция с раствором щелочи на антраценпроизводные (кора крушины, корни ревеня и др.);

    реакция с раствором железоаммонийных квасцов на дубильные веществ (кора дуба, корневища змеевика, бадана и др.).

    Часто проведению реакции мешают сопутствующие вещества (белки, амины, стерины, хлорофилл). В этом случае используют очищенное извлечение (например, из сырья, содержащего сердечные гликозиды, кумарины, алкалоиды, фенологликозиды, лигнаны).

    Очищают извлечение осаждением сопутствующих веществ раствором ацетата свинца и сульфата натрия или используют прием смены растворителей либо метод распределительной хроматографии.

    Микрохимические реакции проводят обычно одновременно с микроскопическим анализом, наблюдая результаты под микроскопом:

    на эфирное и жирное масло с раствором Судан III;

    на одревесневшие лигнифицированные элементы с раствором флороглюцина и 25%-ным раствором серной кислоты или концентрированной хлороводородной кислоты.

    На кору дуба (порошок) проводят реакцию с железоаммонийными квасцами и результат реакции изучают под микроскопом.

    Гистохимические реакции - это такие реакции, с помощью которых можно выявить те или иные соединения непосредственно в клетках или структурах, где они локализуются.

    По Государственной фармакопее XI, гистохимические реакции проводят на слизь с раствором туши в корнях алтея и семенах льна.

    Микросублимация - непосредственное выделение из сухого растительного материала веществ, которые легко возгоняются при нагревании. Полученный сублимат исследуют под микроскопом, затем проводят микрохимическую реакцию с соответствующим реактивом.

    Методы определения подлинности лекарственного растительного сырья. Подлинность сырья определяется макроскопическим, микроскопическим, химическим и люминесцентным анализами.

    Макроскопический анализ. Для его проведения следует знать морфологию растений. Изучают внешний вид сырья невооруженным глазом или с помощью лупы, измеряют размеры частиц с помощью миллиметровой линейки. При дневном освещении определяют цвет сырья с поверхности, на изломе и на разрезе. Запах устанавливают при растирании или разломе растений, а вкус - только у неядовитых растений. При изучении внешнего вида обращают внимание на морфологические признаки частей сырья.

    Микроскопический анализ. Используют для определения подлинности измельченного лекарственного растительного сырья. Для этого нужно знать анатомическую структуру растений в целом и характерные для конкретного растения признаки, отличающие его от других растений.

    Химический анализ. Предусматривает проведение качественных, микрохимических, гистохимических реакций и сублимации для определения в сырье действующих или сопутствующих веществ. Микрохимические реакции целесообразно проводить параллельно с микроскопическим анализом. Гистохимические реакции проводят для выявления конкретных соединений в местах их локализации в растении. Под сублимацией понимают получение из растительного сырья легко возгоняемых при нагревании веществ с последующей качественной реакцией с сублиматом.

    Люминесцентный анализ. Это метод исследования различных объектов (в том числе и биологических), основанный на наблюдении их люминесценции. Люминесценция - свечение газа, жидкости или твердого тела, обусловленное не нагревом тела, а нетепловым возбуждением его атомов и молекул. Люминесцентный анализ проводят для определения в лекарственном сырье веществ, обладающих люминесценцией.

    Контроль качества органотерапевтических препаратов. Для проверки соответствия качества желез требованиям стандарта от каждой партии отбирают 5 % ящиков или пакетов, но не менее пяти таких упаковок. Если в одном из вскрытых ящиков или пакетов железы не соответствуют требованиям соответствующего стандарта хотя бы по одному из показателей, то проверяют всю партию.

    Для единичных видов сырья имеются объективные (лабораторные) методы оценки его качества.

    Объективно качество поджелудочной железы, предназначенной для производства инсулина, согласно ГОСТу, определяют по показателям массовой доли жира и массовой доли инсулина с помощью соответствующих лабораторных методов.

    Массовую долю жира определяют жиромером. Массовую долю инсулина проверяют по требованию потребителя иммунореактивным методом с помощью антисыворотки, иммуноглобулинов в гомогенизированной железе.

    Качество слизистой оболочки (эпителия) языков крупного рогатого скота проверяют путем определения величины pH консервирующей среды с эпителием и ее бактериальной обсемененности. Сущность метода заключается в определении общего количества микробов в 1 мл консервирующей среды с эпителием.

    Качество стекловидного тела глаз крупного рогатого скота, свиней, овец и коз замороженного определяют по количественному содержанию гиалуроновой кислоты (по глюкозамину) в стекловидном теле. Принцип метода основан на определении глюкоза-мина в продуктах гидролиза гиалуроновой кислоты, который является составной частью молекулы гиалуроновой кислоты и находится в прямой зависимости от содержания его в стекловидном теле.

    Биологическую активность гипофизов определяют в единицах действия АКТГ, содержащегося в 1 мг кислого ацетонированного порошка (КАП), полученного из гипофизов.

    Определение активности АКТГ основано на его способности вызывать редукцию лимфоидной ткани, в частности зобной железы крысят. За единицу действия препарата принимают ту ежедневную дозу препарата, которая при введении в течение пяти суток вызывает уменьшение массы железы на 50±5 %.

    Качество паращитовидных желез определяют гистологическим методом. На срезах паращитовидных желез просматриваются скопления эпителиальных клеток с выраженной базофильной зернистостью. На срезах лимфатических желез просматривается ретикулярная ткань (в виде однородной массы), окруженная плотной соединительной оболочкой (капсулой), от которой внутрь отходят ясно видимые соединительные тяжи. Государственным стандартом предусмотрено, что в пробе из 40 желез может содержаться не более одного лимфатического узла.

    Методы определения качества сухих биологических препаратов. Сухие биологические препараты имеют ряд преимуществ по сравнению с традиционными жидкими биопрепаратами благодаря лучшему качеству, меньшей массе, возросшему сроку хранения, удобству транспортирования.

    Физические методы. 1.Метод определения вакуума. Сущность метода заключается в способности высокочастотного электрического тока при большом напряжении вызывать в газах свечение, характер которого изменяется в зависимости от степени разреженности воздуха в ампуле (флаконе).

    Отбор проб. Отбор проб проводят в соответствии с правилами, установленными в государственных стандартах на сухие биологические препараты.

    Аппаратура и оборудование. При проведении испытания используют: аппарат типа «Д’Арсеналь» или «Тесла», штатив для ампул, стол металлический.

    Проведение испытания. Подготовка к испытанию:

    перед испытанием проверяют внешний вид, плотность укупоривания флаконов, наличие трещин, запайку ампул.

    Аппарат выдерживают в течение 10 мин после включения. Испытуемые ампулы устанавливают в штативе, затем к ним подводят электрод на расстояние 1 см. При определении вакуума с помощью аппарата «Тесла» один металлический электрод аппарата заземляют через металлический стол, на котором разложены ампулы, а другой подводят к проверяемым ампулам. Экспозиция не более 1 с.

    Обработка результатов. Появление свечения внутри ампул с характерным потрескиванием указывает на наличие в них вакуума.

    Степень разрежения воздуха в проверяемых ампулах определяют по характеру свечения газов в проверяемых ампулах в соответствии с нижеследующими данными.

    Определение степени разрежения воздуха в проверяемых ампулах

    2. Метод определения в л а ж н о с т и. Сущность метода заключается в определении уменьшения массы пробы препарата после ее высушивания в течение 1 ч при температуре 105 °С.

    Отбор проб. Для испытания из разных мест упаковки отбирают необходимое количество ампул (флаконов) с учетом требований к массе проб (в соответствии со стандартом).

    При отборе проб проверяют герметичность ампул. У флаконов с лиофилизированным препаратом проверяют стенку и дно на целостность, а также полноту прилегания закатанного колпачка и резиновой пробки. При наличии дефектов флакон заменяют другим. Каждую ампулу, запаянную под вакуумом, перед извлечением из нее препарата проверяют на герметичность.

    Аппаратура, материалы и реактивы. При проведении испытания используют: весы лабораторные, шкаф сушильный лабораторный, термометры ртутные, эксикатор, бюксы стеклянные, вазелин технический, кальций хлористый безводный или гипс обезвоженный, или силикагель прокаленный.

    Подготовка к испытанию. Сушильный шкаф проверяют максимальными термометрами на равномерность нагрева.

    При высушивании проб в бюксах нижняя часть контрольного термометра должна находиться на уровне бюкс. Показания контрольного термометра являются определяющими для настройки температуры в шкафу.

    Весы должны быть установлены на прочном столе без вибрации. Результаты всех взвешиваний регистрируют в граммах с точностью до четвертого десятичного знака.

    Нижняя часть эксикатора должна быть заполнена обезвоженным хлористым кальцием или гипсом, или силикагелем. Пришлифованные края сосуда слегка смазывают техническим вазелином.

    Для каждого анализа должны быть подготовлены три бюксы одинаковых диаметров и высоты.

    Проведение испытания. Для определения влажности используют три ампулы, если в каждой из них масса пробы не менее 0,1 г. Если ампула содержит менее 0,1 г биологического препарата, то можно использовать две и более ампул.

    Отобранную пробу, растолченную до порошкообразного состояния, помещают ровным слоем в предварительно взвешенную бюксу.

    Бюксы устанавливают в сушильный шкаф на полку. Началом сушки следует считать время достижения температуры 105 °С по контрольному термометру. Продолжительность сушки 60 мин.

    После окончания сушки бюксы быстро закрывают крышками и переносят в эксикатор для охлаждения до комнатной температуры, после чего бюксы взвешивают с точностью до четвертого знака и регистрируют по форме.

    3. Метод определения количества кислорода. Отбор проб. Отбор проб проводят в соответствии с правилами, установленными в государственных стандартах на сухие биологические препараты.

    Аппаратура, материалы и реактивы. При проведении испытания используют: хроматограф газовый марки ЛXM-8МД или других аналогичных марок с детектором по теплопроводимости и газохромографической колонкой диаметром 3 мм и длиной 1000 мм, печь муфельную с температурой нагрева до 1000 °С, измеритель расхода газа с бюреткой, секундомер, шприц медицинский вместимостью 1 см 3 , сетки проволочные тканые, лупу измерительную, эксикатор, ступку фарфоровую, линейку металлическую длиной 30 см, сита молекулярные - цеолит синтетический марки СаА, иглу медицинскую, трубку медицинскую резиновую внутренним диаметром 4,2 мм, длиной 10 м, бутыль вместимостью 3000 см 3 , пробку резиновую, масло силиконовое, гелий, азот газообразный, воду дистиллированную.

    Подготовка к испытанию. Подготовка колонки. Синтетический цеолит измельчают в фарфоровой ступке, отсеивают на ситах, промывают дистиллированной водой, высушивают и прокаливают в муфельной печи при температуре 450...500 °С в течение 2 ч, затем охлаждают в эксикаторе на сетках до комнатной температуры.

    Хроматографическую колонку устанавливают вертикально и засыпают синтетическим цеолитом. Колонку не досыпают на 1 см и закупоривают сеткой. Заполненную колонку устанавливают в термостате хроматографа и, не присоединяя к детектору, пропускают через нее поток гелия или азота в течение 3 ч при температуре 160... 180 °С. Затем колонку присоединяют к детектору и продолжают через нее пропускать гелий или азот, пока не прекратится дрейф нулевой линии при максимальной чувствительности детектора.

    Подготовку хроматографа к работе и включение выполняют в соответствии с заводской инструкцией.

    Подготовка флакона с препаратом к испытанию. Для отбора пробы из флакона с препаратом выравнивают давление газа во флаконе с атмосферным давлением.

    Подготовка медицинского шприца. Предварительно устанавливают на штоке шприца металлическую трубку и проверяют шприц на герметичность. Проверенным и подготовленным к отбору газа медицинским шприцем с иглой прокалывают резиновую трубку, по которой выходит гелий из колонки сравнения хроматографа, и дважды медленно шприцем набирают и выпускают гелий. В третий раз, набрав гелий в шприц и расположив его иглой вниз, отбирают пробы газа из флакона с препаратом.

    Проведение испытания. Из каждого флакона отбирают две пробы газа и последовательно одну за другой с интервалом 3...4 мин вводят в испаритель хроматографа. Пробу в испаритель вводят плавным нажатием пальца на шток. Через 110... 120 с после ввода пробы на хроматограмме самописец вычерчивает пик кислорода, а затем пик азота.

    Обработка результатов. Рассчитывают площадь пиков кислорода и азота. Для этого на хроматографе измеряют высоту и ширину пиков кислорода и азота с помощью металлической линейки длиной 30 см, увеличительной лупы и остро заточенного карандаша. Высоту пиков измеряют от базовой линии до вершины пика, ширину пика - на половине его высоты. При измерениях берут расстояние от внутренней толщины линии пика до наружной.

    Площадь пиков кислорода (SО 2 , мм 2) и азота (5N 2 , мм 2) вычисляют по формулам

    SО 2 = h 1 *b 1 ; SN = h 2 *b 2 ,

    где h 1 h 2 ~ высота пиков кислорода и азота, мм; b 1 , b 2 - ширина пиков кислорода и азота, мм.

    Объемную долю кислорода (X, %) в каждой пробе газа вычисляют по формуле

    X=SO 2 /(SO 2 +SN 2)

    где SO 2 , SN 2 - площади пиков кислорода и азота, мм 2 .

    За окончательный результат испытания принимают среднее арифметическое результатов определений в трех флаконах препарата.

    Относительная приведенная погрешность метода при доверительной вероятности Р- 0,95 не должна превышать 10 %.

    Бактериологический метод. Контроль стерильности. Сущность метода заключается в микробиологической оценке отсутствия роста бактерий и грибов в высевах препаратов на питательные среды.

    Отбор проб. От каждой серии препаратов отбирают пробы в количестве 0,15 % флаконов, но не менее пяти для жидких и 10 ампул для сухих препаратов.

    Подготовка к испытанию. Лабораторную посуду кипятят в течение 15 мин в дистиллированной воде, подкисленной раствором соляной кислоты, а затем промывают водопроводной водой и моют ершом в растворе, содержащем на 1000 см 3 дистиллированной воды 30 г стирального порошка и 50 см 3 водного аммиака. После этого посуду тщательно промывают сначала водопроводной водой, а затем три раза дистиллированной водой, высушивают и стерилизуют.

    Перед стерилизацией посуду укладывают в металлические пеналы. Стерилизуют посуду в автоклаве при 0,15 МПа в течение 60 минут.

    Готовые питательные среды, проверенные на ростовые свойства, разливают по 6...8 см 3 (для определения анаэробов по 10...12 см 3) в пробирки, по 50...60 см 3 во флаконы вместимостью 100 см 3 .

    Пробы сухих биологических препаратов предварительно растворяют стерильным растворителем (изотонический раствор хлорида натрия, дистиллированная вода и т. д.).

    Проведение испытания. 1. Проведение испытания на стерильность с использованием тиогликолевой среды.

    Из каждого флакона препарата производят посев по 1 см 3 в три пробирки, содержащие тиогликолевую среду.

    Две засеянные пробирки выдерживают в термостате в течение 14сут: одну -при температуре 21 °С, другую -при температуре 37 °С.

    Третью пробирку выдерживают в течение 7 сут при температуре 37 °С и затем делают из нее пересевы по 0,5 см 3 по одной пробирке на скошенный казеиновый агар, казеиновый питательный бульон, среду Сабуро и по 1 см 3 на казеиновый питательный бульон под вазелиновым маслом с кусочками мяса или печени.

    Пересевы на казеиновый агар, мясопептонный бульон выдерживают еще в течение 7 сут при температуре 37 °С, а пересев на среду Сабуро - при температуре 21 °С.

    При испытании проб препаратов проводят контроль стерильности сред: три пробирки с каждой средой выдерживают в термостате в течение 14 сут при 37 °С, со средой Сабуро - при температуре 21 °С.

    2. Проведение испытания на стерильность без тиогликолевой среды.

    Из каждой пробы препарата производят посев на жидкую среду Сабуро, мясопептонный агар и мясопептонный бульон - по три пробирки; на среду Тароцци - по две пробирки и два флакона.

    Для выявления аэробов высевают 0,5 см 3 посевного материала в одну пробирку и 1...2 см 3 в один флакон, а для выявления анаэробов - соответственно по 1 и 5 см 3 . Посевы помещают в термостат (при температуре 37 °С; для Сабуро - при температуре 21 °С) на 7 сут (15 сут для анаэробов). Затем делают пересев (кроме посевов на мясопептонном агаре). Пересевают на те же среды. Выдерживают 7 сут (15 сут для анаэробов). Проводят контроль стерильности.

    Оценка результатов. Учитывают результаты первичного и повторного посевов путем макроскопического, а в случае роста микроорганизмов - микроскопического исследования всех посевов, учитывают через 14 сут после первичного посева на тиогликолевой среде и через 7 сут после первичного посева без тиогликолевой среды. Среду считают стерильной, если ни в одной из засеянных пробирок не наблюдается рост.

    В случаях роста хотя бы в одной из засеянных пробирок контроль стерильности повторяют на том же количестве проб и проводят микроскопию выросших микробов. Мазки окрашивают по Граму, отмечая морфологию.

    При отсутствии роста в повторном контроле препарат считают стерильным. При наличии роста хотя бы в одной из пробирок и идентичности микрофлоры при первичном и повторном посевах препарат считают нестерильным.

    Если при первичном и повторном посевах выявлена различная микрофлора, а также выявлен рост лишь в отдельных пробирках, проводят посев образцов в третий раз.

    При отсутствии роста препарат считают стерильным. При обнаружении роста хотя бы в одной пробирке независимо от характера микрофлоры препарат считают нестерильным.

    Нормативные требования к качеству готовых лекарственных форм. Лекарственные формы изготовляют на заводах, фармацевтических фабриках (официальные лекарственные средства) и в аптеках (магистральные лекарственные средства). Контроль готовых лекарственных форм на фармацевтических предприятиях осуществляют в соответствии с требованиями НТД (Государственной фармакопеи, ФС, ФСП, ГОСТов). В соответствии с требованиями этих документов лекарственные формы должны подвергаться проверке (В. Д. Соколов, 2003).

    Таблетки испытывают на распадаемость. Если нет других указаний в частной статье, то таблетки должны распадаться в течение 15 мин, а покрытые оболочкой не более 30 мин. Кишечнорастворимые таблетки не должны распадаться в течение 1 ч в растворе соляной кислоты, но должны распадаться в течение 1 ч в растворе натрия гидрокарбоната. Прочность таблеток на истирание должна быть не менее 75 %. Лекарственное средство, содержащееся в таблетке, должно растворяться в воде за 45 мин не менее чем на 75 %. Среднюю массу определяют взвешиванием 20 таблеток с точностью до 0,001 г. Допускаются отклонения от средней массы: ±7,5%-для таблеток массой 0,1...0,3 г и ±5%-для таблеток массой 0,5 г и более. В таблетках также контролируют содержание талька.

    Гранулы - определяют размер с помощью ситового анализа. Диаметр ячейки должен быть 0,2...3 мм, а число более мелких и более крупных гранул не должно превышать 5 %. Испытание распадаемости гранул из навески 0,5 г такое же, как и у таблеток. Время распадаемости не должно превышать 15 мин. Определяют влагу. Для выявления содержания лекарственного вещества берут навеску не менее чем из 10 растертых гранул.

    Капсулы - контролируют среднюю массу. Отклонение от нее каждой капсулы не должно превышать ±10 %. Подобно тому как это проводят с таблетками, контролируют распадаемость и растворимость, а также определяют однородность дозирования для капсул, содержащих 0,05 г и менее лекарственного вещества. Количественное определение лекарственных веществ выполняют по специальным методикам, используя для этих целей содержимое от 20 до 60 капсул.

    Порошки - устанавливают отклонения в массе дозированных порошков. Они могут быть ±15% при массе порошка до 0,1 г; ±10 % - от 0,1 до 0,3 г; ±5 % - от 0,3 до 1; ±3 % - свыше 1 г.

    Суппозитории - визуально определяют однородность на продольном разрезе. Среднюю массу устанавливают взвешиванием с точностью до 0,01 г, отклонения не должны превышать ± 5 %. Суппозитории, изготовленные на липофильных основаниях, контролируют по температуре плавления. Она не должна превышать

    37 °С. Если эту температуру установить невозможно, то определяют время полной деформации, которое должно быть не более 15 мин. Суппозитории, изготовленные на гидрофильной основе, испытывают на растворимость (показатель «растворение»). Определяют время растворения при температуре (37±1) °С, которое не должно превышать 1 ч. Количественное определение лекарственных веществ проводят по специальным методикам.

    Настойки - определяют содержание спирта или плотность. Содержание действующих веществ устанавливают с помощью специальных методик. Кроме того, определяют сухой остаток после выпаривания в бюксе 5 мл настойки досуха и высушивания его в течение 2 ч при температуре (102,5±2,5) °С. В таком же объеме настойки после сжигания и прокаливания ее смеси с 1 мл концентрированной серной кислоты определяют содержание тяжелых металлов.

    Экстракты - как и в настойках, определяют плотность или содержание спирта, действующих веществ, тяжелых металлов. Устанавливают также сухую массу остатка, а в густых и сухих экстрактах - содержание влаги [высушиванием в сушильном шкафу при температуре (102,5±2,5) °С).

    Аэрозоли - измеряют давление внутри баллона с помощью манометра при комнатной температуре (если пропеллентом служит сжатый газ). Проверяют упаковку на герметичность. В дозированных упаковках определяют среднюю массу препарата в одной дозе, отклонение в которой допускается не более +20 %. Устанавливают процент выхода содержимого путем удаления его из баллона с последующим взвешиванием. Количественное определение вещества проводят в соответствии с требованиями частных статей Государственной фармакопеи. Отклонения от изложенных количеств не должно превышать ±15 %.

    Мази - общим испытанием является метод определения размера частиц лекарственного вещества в мазях. Используют микроскоп с окулярным микрометром МОВ-1.

    Пластыри. Состав, показатели качества, методики испытаний бывают разные и изложены в нормативной документации на конкретную продукцию.

    Капли глазные испытывают на стерильность и наличие механических включений.

    Инъекционные лекарственные формы. Особого внимания требуют инъекционные лекарственные растворы, вводимые внутривенно в больших количествах. Используют такие характеристики, как внешний вид, в том числе окраска и прозрачность растворов, отсутствие механических примесей, апирогенность, стерильность, объем раствора, количество в нем действующего вещества, pH и изотоничность плазмы крови, упаковка, маркировка, объем наполнения ампул. Нормы допустимых отклонений указаны в Государственной фармакопее XI. Кроме того, определяют содержание вспомогательных веществ; для некоторых из них (фенол, крезол, сульфиты, хлорбутанол) предусмотрены допустимые количества (от 0,2 до 0,5 %). Требования к pH зависят от препарата, обычно его показатель может находиться в пределах от 3,0 до 8,0. На каждой ампуле (флаконе) указывают название лекарственного средства, его содержание (в процентах) или активность (в единицах действия, ЕД), объем или его массу, номер серии, срок годности. Проведение всех испытаний инъекционных лекарственных форм регламентировано НТД.

    Анализ гомеопатических лекарственных средств весьма труден из-за высоких разведений лекарственных веществ. Если БАВ содержатся в настойках, эссенциях, мазях и других формах в разведениях до 2 С (С - сотенное) или 0,0001, то их анализ и стандартизация практически не отличаются от контроля качества лекарственных форм, используемых в аллопатической медицине. Лекарственные средства в разведении 2...3 С (10 -4 ...10 -6) анализируют после проведения специальных приемов концентрации с помощью упаривания, сжигания веществ с последующим определением одним из физико-химических методов, исходя из его разрешающей способности. При более чем 3 С разведении (10 -6) достаточно установить подлинность лекарственного средства, содержащегося в одной разовой или суточной дозе. При очень высоких разведениях (до 50 С или 10 -10 ...10 -100) контроль качества гомеопатических средств существующими методами выполнить невозможно. Для таких лекарств контроль качества осуществляют на стадии получения, строго контролируя технологический процесс. Качество контролируют при закладке ингредиентов и фиксируют в акте загрузки. Каждый ингредиент подвергают предварительному анализу. Во всех перечисленных случаях для анализа и стандартизации гомеопатических лекарственных средств используют хроматографические, фотометрические, флуоресцентные и другие методы.

    УДК 615.015:615.07:53

    АНАЛИЗ ЛЕКАРСТВЕННЫХ СРЕДСТВ ПРИ ФАРМАКОКИНЕТИЧЕСКИХ

    ИССЛЕДОВАНИЯХ

    Дмитрий Владимирович Рейхарт1, Виктор Владимирович Чистяков2

    Кафедра организации и управления в сфере обращения лекарственных средств (зав. - чл.-корр. РАМН, проф. Р.У. Хабриев) Московской государственной медицинской академии им. И.М. Сеченова,

    2 Центр по химии лекарственных средств - ВНИХФИ (ген. директор - К.В. Шилин), г. Москва

    Проведен обзор чувствительных и специфичных аналитических методов, применяемых при изучении фармакокинетики лекарственных препаратов. Показаны достоинства и ограничения применения имму-ноферментного анализа, метода высокоэффективной жидкостной хроматографии с флуоресцентной и масс-спектрометрической детекцией. Применение того или иного метода при оценке фармакокинетики лекарственных препаратов в каждом конкретном случае определяется структурой исследуемого соединения и оснащенностью лаборатории.

    Ключевые слова: жидкостная хроматография, флюоресцентная и масс-спектрометрическая детекция, иммуноферментный анализ, фармакокинетика.

    Изучение фармакокинетики основано главным образом на оценке концентрации в организме пациента лекарственного вещества (ЛВ) в определенные моменты времени после приема препарата. Объектом исследования служат кровь (цельная, сыворотка, плазма), моча, слюна, кал, желчь, амниотическая жидкость и др. Наиболее доступны и чаще исследуются образцы крови и мочи.

    Измерение концентрации ЛВ можно разделить на два этапа: 1 - выделение конкретного лекарственного вещества из биологического объекта, концентрирование исследуемого соединения, отделение его от основных эндогенных компонентов; 2 - разделение смеси соединений, идентификация ЛВ и количественный анализ.

    Изучение концентрации препарата в крови дает информацию о продолжительности циркуляции лекарства в организме, биодоступности препарата, влиянии концентрации на фармакологический эффект, терапевтической и летальной дозах, динамике образования активных или токсичных метаболитов.

    Изучение концентрации препарата в моче позволяет оценить скорость элиминации ЛВ и функцию почек. Концентрация метаболитов в моче - косвенный показатель активности метаболизирующих ферментов.

    Исследование биологического материала включает измерение массы (объема) пробы, высвобождение препарата (метаболитов) из 532

    клеток пробы, отделение целых клеток (например, при анализе крови) или частей клеток (при анализе гомогенатов тканей), добавление внутреннего стандарта, отделение белков, очистку пробы (центрифугирование, фильтрация), процедуры экстракции, реэкстракции, концентрирования и превращения исследуемых веществ в удобные для анализа производные, основные процедуры обработки проб крови и мочи соответственно (рис. 1).

    «Идеальный» аналитический метод измерения концентрации ЛВ должен обладать высокой чувствительностью, специфичностью и воспроизводимостью, возможностью работы с малыми объемами, простотой подготовки материала, дешевизной и легкостью обслуживания оборудования, надежностью и возможностью автоматизации, простотой работы персонала и универсальностью (возможность анализа различных классов ЛВ).

    Для получения достоверных данных необходимо делать поправку на стабильность действующего вещества и/или продукта (продуктов), а также степень его биотрансформации в анализируемых биологических средах .

    Валидация метода должна проводиться c учетом его предполагаемого применения, при калибровке следует учитывать диапазон концентраций исследуемого образца. Категорически не рекомендуется применять два или более метода анализа проб в одном и том же материале со сходным диапазоном калибровочных значений.

    Существует большое число методов определения концентрации ЛВ в биологических жидкостях: xроматографические, микробиологические, спектрофотометрические, полярографические, иммунологические (радиоим-мунные, иммуноэнзимные), радиоизотопные и другие методы.

    Критическими параметрами метода являются чувствительность, скорость, точность, возможность работы с малым объемом биоматериала и стоимость.

    В табл. 1 сравниваются аналитические методы анализа ЛВ .

    Наиболее широко (до 95% исследований) на практике применяется метод высокоэффектив-

    Рис. 1. Основные процедуры обработки проб крови и мочи.

    ной жидкостной хроматографии (ВЭЖХ) с различными видами детекции.

    Преимуществами ВЭЖХ по сравнению, например, с методом газожидкостной хроматографии (ГЖХ) являются отсутствие ограничений по термостабильности анализируемых препаратов, возможность работы с водными растворами и летучими соединениями, использования вариантов «нормальнофазной» и «обращеннофазной» хроматографии. Многие из видов детекции являются неразрушающи-

    иммуноферментный, ВЭЖХ с флуоресцентной детекцией, ВЭЖХ с масс-спектрометрической детекцией, которые в настоящее время активно применяются в фармакокинетических исследованиях.

    Иммуноферментный метод

    Метод иммуноферментного анализа (ИФА) предложен в начале 70-х годов прошлого столетия. Принцип ИФА заключается во взаимодействии специфических белковых ан-

    Сравнительная характеристика методов анализа лекарственных средств

    Методы Абсолютная чувствительность, г Чувст- витель- ность, баллы Слож- ность, баллы Избира- тельность, баллы Универ- сальность Сум- марная оценка, баллы

    Жидкостная хроматография:

    УФ-детектор 10-7 3 -3 4 4 8

    флуоресцентный детектор 10-8 - 10-9 4 -3 5 2 8

    масс-спектрометрический детектор 10-11 - 10-12 5 -5 5 4 9

    Иммунологические 10-10 - 10-11 5 -1 4 1 9

    Газовая хроматография:

    электронозахватный детектор 10-10 5 -4 4 2 7

    пламенно-ионизационный детектор 10-8 - 10-9 4 -3 2 4 7

    ми; методы детекции, используемые в ВЭЖХ, обладают более высокой специфичностью.

    Рассмотрим особенности высокочувствительных методов, позволяющих анализировать нанограммовые количества ЛВ (табл.1):

    тител с анализируемым веществом, выступающим в роли антигена. Чем выше концентрация вещества-антигена, тем больше образуется комплексов антиген-антитело. Для количественного анализа комплексообразования при-

    меняют два подхода - с предварительным отделением комплекса (гетерогенные методы) или без его отделения (гомогенные методы). В том и другом случае пробу с неизвестной концентрацией анализируемого вещества добавляют к сыворотке, в которой антитело связано в комплекс с меченным аналогом исследуемого вещества, и вещество из анализируемой пробы вытесняется из комплекса. Количество вытесненного меченного аналога пропорционально концентрации вещества в пробе. Определив, сколько меченного аналога оказалось вытеснено из комплекса (или, напротив, осталось связанным), можно рассчитать искомый уровень вещества в пробе. Предварительно проводится калибровка с использованием стандартных растворов (со стандартными концентрациями тестируемого вещества).

    Выпускаются наборы реактивов - так называемые диагностикумы (антисыворотка, соединенный с препаратом фермент, субстрат, кофактор, стандартные растворы для калибровки), рассчитанные на 50-200 анализов. Для анализа обычно достаточно 0,05-0,2 мл сыворотки крови больного.

    Иммуноэнзимные методы обладают высокой чувствительностью и специфичностью. Диагностикумы сравнительно дешевые и имеют более продолжительные сроки годности, чем наборы для радиоиммунных методов. При использовании ИФА устраняется необходимость отделения комплекса антиген-антитело - достаточно сложной процедуры, с относительно высоким риском ошибки. Им-муноэнзимный метод может выполняться в любой больничной или поликлинической лаборатории; разработаны приборы, обеспечивающие полную автоматизацию анализа.

    Простота анализа, высокая чувствительность, точность, воспроизводимость,

    умеренная цена аппаратуры и реактивов - все это создает перспективу для широкого внедрения иммунологических методов в медицинскую практику.

    Высокоэффективная жидкостная хромотография с флуоресцентной детекцией

    При ВЭЖХ детектор генерирует электрический сигнал, сила которого пропорциональна концентрации анализируемого вещества, растворенного в подвижной фазе. В первых жидкостных хроматографах (ионообменных) прошедшая через колонку подвижная фаза с компонентами пробы собиралась в небольшие сосуды, а затем при помощи титрометрии, колориметрии, полярографии и т.д. определялось содержание компонента в этой порции. Иными словами, процессы разделения пробы

    и определения ее количественного состава были разделены во времени и пространстве. В современном жидкостном хроматографе эти процессы обеспечиваются одним прибором.

    Для детекции компонентов пробы может быть использовано любое физико-химическое свойство подвижной фазы (поглощение или излучение света, электропроводность, показатель преломления и т.д.), которое изменяется при наличии в ней молекул разделяемых соединений. Из существующих 50 физико-химических методов детекции в настоящее время активно используется 5-6.

    Чувствительность-важнейшая характеристика детектора. Если определять чувствительность через двойную амплитуду шума нулевой линии, а шум выражать в физических единицах, то чувствительность фотометрического детектора будет выражаться в единицах оптической плотности, рефрактометрического - в единицах показателя преломления, вольтам-перометрического - в амперах, кондуктомет-рического - в сименсах. В фармацевтическом анализе чувствительность выражают в минимальном количестве определяемого вещества. Степень чувствительности различных типов детекторов приведена в табл. 1.

    Несмотря на то что в настоящее время 80% хроматографов оснащено в базовой комплектации спектрофотометрическими детекторами, всё большее распространение получает флуоресцентная детекция, особенно при определении концентрации соединений, способных «светиться» под действием возбуждающего излучения. Интенсивность люминесценции пропорциональна интенсивности возбуждающего света. Исследование спектров испускания (флуоресценции и фосфоресценции) - более чувствительный и специфичный метод, чем исследование спектров поглощения.

    Спектр флуоресценции вещества во многих случаях представляет собой зеркальное отражение полосы поглощения с наименьшей энергией и обычно располагается рядом с этой полосой с её длинноволновой стороны. Данный метод наиболее удобно применять при исследовании лекарственных препаратов, обладающих собственной флуоресценцией (хлорохин, доксорубицин, доксазо-зин, атенолол, индометацин, пропранолол, тетрациклины, хинидин и др.). Некоторые ЛВ можно сравнительно легко превратить во флуоресцирующие соединения (процесс дериватизации), например гидрокортизон (обработка серной кислотой), меперидин (конденсация с формальдегидом), 6-меркап-топурин и метотрексат (окисление перманганатом калия). Другие препараты с активными функциональными группами можно конденсировать с флуоресцирующими реа-

    гентами - флуорескамином (хлордеазепок-сид, новокаинамид, сульфаниламиды и др.), 7-нитробензо-2,1,3-оксадиазолом (пропокси-фен и др.) и т.д. Вместе с тем необходимо отметить, что при высокой чувствительности и селективности флуоресцентные методы детектирования ограничены кругом ЛВ, имеющих естественную флуоресценцию, а процесс дериватизации при количественном анализе требует больших затрат.

    Высокоэффективная жидкостная хроматография с масс-спектрометрической детекцией

    Высокочувствительным вариантом современного детектора для ВЭЖХ, применяемого для фармакокинетических исследований, является масс-спектрометрометр. Масс-спектрометрический детектор позволяет значительно сократить время анализа, в частности за счет исключения подготовительной стадии (экстракции). Данный метод дает возможность одновременно идентифицировать несколько веществ, и это исключает ошибки, связанные с наличием неразделяемых компонентов.

    Масс-спектрометрия - один из наиболее перспективных методов физико-химического анализа лекарственных средств. Традиционно органическая масс-спектрометрия используется для решения двух основных проблем: идентификации веществ и изучения фрагментации ионизированных молекул в газовой фазе. Соединение масс-спектрометра с жидкостным хроматографом значительно расширило возможности классического метода. С появлением новых методов ионизации, таких как «электроспрей» (ESI - англ. electrospray ionization) - ионизация в электрическом поле при атмосферном давлении) и «МАЛДИ» - ионизация лазерной десорбцией, список молекул, которые могут быть изучены данным методом, значительно расширился.

    В настоящее время комбинация ВЭЖХ и масс-спектрометрического детектора с «электроспреем» нашла широкое распространение в исследовании фармакокинетики и биоэквивалентности лекарственных препаратов . Первоначально метод ESI был разработан под руководством Л.Н. Галль , а в 2002 г. Д. Фен-ну и К. Танаке была присуждена Нобелевская премия за разработку методов индентифика-ции и структурного анализа биологических макромолекул и, в частности, методов масс-спектрометрического анализа биологических макромолекул. В механизме образования ионизированных частиц выделяют три стадии. Первая - образование заряженных капель на срезе капилляра. Посредством приложенного напряжения происходит перераспределение заряда в растворе, положительные ионы скап-

    ливаются у выхода. При сильном приложенном поле (3-5 кВ) образуется струя из вершины конуса, которая далее разлетается на мелкие капли. Вторая стадия - постепенное сокращение размеров заряженных капель за счет испарения растворителя и последующего распада капель вплоть до получения истинных ионов. Заряженные капли движутся сквозь атмосферу по направлению к противоположному электроду. Третья стадия - повторяющиеся циклы разделения и уменьшения объема капель до полного испарения растворителя и образования ионов в газовой фазе.

    Современные ЖХ-МС системы (LC/MS - англ. liquid chromatography/mass-spectrometry) позволяют регистрировать полный ионный ток (TIC - англ. total ion current), проводить контроль заданных ионов (SIM - англ. selected ion monitoring) и контроль заданных реакций селективное мониторирование реакции (SRM - англ. selected reaction monitoring).

    При анализе полного ионного тока (TIC) получают данные обо всех соединениях, последовательно выходящих из хроматографической колонки. Масс-хроматограммы напоминают хроматограммы с УФ-детекцией, при этом площадь под пиком соответствует количеству вещества. При определении заданных ионов (SIM) оператор может ограничить диапазон детекции необходимых соединений выделив, например, минорные вещества. Наибольшей чувствительностью и специфичностью обладает SRM-метод, когда регистрация ионного тока идет по одному выбранному иону, характерному для исследуемого соединения (при ESI-ионизации и регистрации положительных ионов это, как правило, - молекулярный ион МН+).

    В недавно опубликованных работах обсуждается возможность количественного анализа органических веществ в биологических объектах без хроматографического разделения с помощью мультионной детекции и внутреннего контроля в виде меченного дейтерием аналога . В частности, для молекул липидной природы определен диапазон концентраций (от пико- до наномолей), при котором авторы наблюдали линейную зависимость интенсивности ионного тока от концентрации вещества. Увеличение концентрации соединений в растворе приводило к ион-молекулярным взаимодействиям в процессе ионизации и нарушению линейности.

    Описан метод количественного определения простагландинов и полиненасыщен-ных жирных кислот с использованием электроспрей-ионизации - масс-спектрометрии без хроматографического разделения с применением внутреннего стандарта и регистрации отрицательных ионов . В работе

    Ю.О. Каратассо и И. В. Логуновой чувствительность масс-спектрометрии при исследовании потенциального антиаритмического средства составила 3 нг/0,5 мл плазмы крови.

    При выборе аналитического метода необходимо иметь в виду, что использование ИФА лимитируется наличием обязательных реактивов, флуоресцентной детекции, необходимостью собственной флуоресценции у исследуемого соединения. Хотя при масс-спектрометрической детекции вышеуказанные ограничения несущественны, однако стоимость оборудования на сегодняшний день остается достаточно высокой, и данный вид анализа требует специальных навыков.

    ЛИТЕРАТУРА

    1. Александров М.Л., Галль Л.Н., Краснов Н.В. и др. Экстракция ионов из растворов при атмосферном давлении - новый метод масс-спектрометрического анализа // Докл. Акад. наук СССР. - 1984. - Т.277. - № 2. -

    2. Каратассо Ю.О, Логунова И. В., Сергеева М. Г. и др. Количественный анализ лекарственных препаратов в плазме крови с использованием электроспрей ионизации - масс-спектрометрии без хроматографического разделения // Хим. фарм. журн. - 2007. - № 4. - С. 161-166.

    3. Каратассо Ю.О, Алёшин С.Е., Попова Н.В. и др. Количественный анализ простагландинов и полине-насыщенных жирных кислот методом масс-спектро-метрии с ионизацией электрораспылением // Масс-спектрометрия. -2007. - Т.4. - В.3. - С. 173-178.

    4. Холодов Л.Е, Яковлев В.П. Клиническая фармакокинетика. - М.:Медицина, 1985. - 463 с.

    5. Covey T.R., Lee E.D., Henion J.D. High-speed liquid chromatography/tandem mass spectrometry for the determination of drugs in biological samples // Anal. Chem. - 1986. - Vol. 58 (12). - P. 2453-2460.

    6. Conference report on analytical methods validation: bioavailability, bioequivalence and pharmacokinetic studies // J. Pharmac. sci. - 1992. - Vol.81. - P. 309-312.

    7. De Long C.J., Baker P.R.S., SamuelM. et al. Molecular species composition of rat liver phospholipids by ESI-MS/ MS: The effect of chromatography//J. Lipid Res. - 2001. - Vol. 42. - P. 1959-1968.

    8. Electrospray Ionization Mass Spectrometry. Ed. R.B.Cole // Wiley. - New York, 1997.

    9. Han X., Yang K., Yang J. et al. Factors influencing the electrospray intrasource separation and selective ionization of glycerophospholipids // Am. Soc. Mass Spectrom. - 2006. - Vol. 17(2). - P. 264-274.

    10. Koivusalo M., Haimi P., Heikinheimo L. et al. Quantitative determination of phospholipids compositions by ESI-MS: Effects of acyl chain length, unsaturation, and lipid concentration on instrument response // J. Lipid Res. - 2001. - Vol. 42. - P. 663-672.

    11. Lee M.S., Kerns E.H. LC/MS applications in drug discovery//Mass Spectrom. Rev. - 1999. - Vol. 18 (3-4). - P. 187-279.

    Поступила 28.05.10.

    ANALYSIS OF DRUGS IN PHARMACOKINETIC STUDIES

    D.V. Reikhart, V.V. Chistyakov

    Conducted was a review of sensitive and specific analytical methods for studying the pharmacokinetics of drugs. Shown were the advantages and limitations of immune-enzyme analysis, of high performance liquid chromatography with fluorescence and mass spectrometric detection. The usage of a method in the evaluation of the pharmacokinetics of drugs in each case should be determined by the structure of the compound and the laboratory equipment.

    Key words: liquid chromatography, fluorescence and mass spectrometric detection, immune-enzyme analysis, pharmacokinetics.

    Похожие статьи