• Химическая связь. Основные положения метода молекулярных орбиталей Основные правила формирования молекулярных орбиталей

    02.03.2022

    Рабочая программа. Метод молекулярных орбиталей. Молекулярная орбиталь как линейная комбинация атомных орбиталей. Понятие о связывающих и разрыхляющих молекулярных орбиталях. Порядок связи. Последовательность увеличения энергии молекулярных орбиталей элементов 1-го и 2-го периодов ПСЭМ. Электронные формулы молекул. Принципы заполнения молекулярных орбиталей. Молекулярные диаграммы двухатомных гомо - и гетероядерных молекул. Магнитные свойства молекул (диамагнетизм и парамагнетизм).

    Метод валентных связей позволяет во многих случаях объяснить образование химической связи и предсказать целый ряд свойств молекул. Тем не менее известно много соединений, существование и свойства которых не могут быть объяснены с позиций метода ВС. Более универсальным является метод молекулярных орбиталей (МО).

    Метод ВС основан на идее образования химической связи парой электронов, принадлежащей двум атомам. Согласно методу МО электроны, образующие химическую связь, движутся в поле, образуемом ядрами всех атомов, составляющих молекулу, т.е. электроны принадлежат всем атомам молекулы. Следовательно, молекулярные орбитали являются в общем случае многоцентровыми.

    Согласно методу МО все электроны данной молекулы, участвующие в образовании химической связи, распределяются по соответствующим молекулярным орбиталям. Каждая молекулярная орбиталь, как и атомная орбиталь, характеризуется своим набором квантовых чисел.

    Молекулярные орбитали получают сложением или вычитанием исходных атомных орбиталей. Если МО образуется из атомных орбиталей ψ А и ψ В, то при их сложении возникает МО ψ + , а при вычитании – ψ - :

    ψ + = с 1 ψ А + с 2 ψ В,

    ψ - = с 3 ψ А – с 4 ψ В,

    где с 1 – с 4 – коэффициенты, определяющие долю участия соответствующей атомной орбитали в МО.

    Эта операция носит название линейной комбинации атомных орбиталей , поэтому метод носит название МО ЛКАО (молекулярная орбиталь есть линейная комбинация атомных орбиталей). Число образующихся МО равно числу исходных АО. Молекулярные орбитали образуются только из атомных орбиталей с близкими энергиями. Большие различия в энергиях исходных АО препятствуют образованию МО. Орбитали внутренних энергетических уровней не участвуют в образовании МО.

    При сложении АО образуются связывающие МО с энергией, меньшей, чем у исходных АО. Вычитание АО ведет к образованию разрыхляющих МО , имеющих более высокую энергию по сравнению с исходными АО. Схема образования связывающих и разрыхляющих МО из 1s атомных орбиталей приведена на рис. 6.11.

    Электроны, находящиеся на МО, характеризуются четырьмя квантовыми числам

    n – главное квантовое число;

    l – орбитальное квантовое число;

    Рис. 6.11. Схема образования связывающей (σ1s) и разрыхляющей (σ*1s) молекулярных орбиталей

    λ – молекулярное квантовое число, аналогичное магнитному квантовому числу m l ; может принимать значения 0; ±1;±2, обозначаемые буквами σ, π, δ соответственно;

    m s – спиновое квантовое число.

    Заполнение молекулярных орбиталей электронами подчиняется принципу Паули, принципу наименьшей энергии и правилу Гунда.

    Последовательность увеличения энергий МО, т.е. последовательность заполнения, для элементов начала 2-го периода (для азота включительно) имеет вид

    σ1s<σ*1s<σ2s<σ*2s<π2p х =π2p z <σ2p y < π*2p х =π*2p z <σ*2p y ,

    а для элементов конца 2-го периода (O, F, Ne) –

    σ1s<σ*1s<σ2s<σ*2s< σ2p y <π2p х =π2p z < π*2p х =π*2p z <σ*2p y .

    Полуразность числа электронов на связывающих (N св) и разрыхляющих (N р) орбиталях носит название порядка (кратности) связи n:

    Молекула образуется, если n>0, т.е. связь может быть образована не только парой, но и одним электроном, и, следовательно, порядок связи может быть не только целым, но и дробным числом. С увеличением порядка возрастает энергия связи.

    Двухатомные гомоядерные молекулы элементов 1-го периода . Простейшей молекулой является молекулярный ион . В соответствии с принципом наименьшей энергии единственный электрон молекулы располагается на σ1s МО. Следовательно, электронная формула молекулярного иона запишется как

    Электронная формула может быть представлена графически в виде молекулярной (энергетической) диаграммы (рис. 6.12), показывающей относительные энергии атомных и молекулярных диаграмм и число электронов на них.

    Порядок связи иона n=(1-0)/2=0,5, следовательно, эта частица может существовать.

    МО



    Рис. 6.12. Молекулярная диаграмма

    Молекулярный ион имеет один электрон, поэтому он является парамагнитным , т.е. втягивается в магнитное поле. Все вещества, имеющие неспаренные электроны, относятся к парамагнетикам.

    Молекула водорода Н 2 содержит два электрона, и ее электронная формула имеет следующий вид:

    Н 2 [(σ1s) 2 ].

    Из молекулярной диаграммы (рис. 6.13) следует, что порядок связи молекулы водорода равен единице. Увеличение порядка связи от 0,5 до 1 при переходе от к Н 2 сопровождается увеличением энергии связи от 236 до 436 кДж/моль и уменьшением длины связи от 0,106 до 0,074 нм.

    Электроны молекулы Н 2 спарены, и по этой причине молекулярный водород диамагнитен , т.е. выталкивается из магнитного поля. К диамагнетикам относятся все вещества, не содержащие неспаренных электронов.

    Рис.6.13. Молекулярная диаграмма Н 2

    Второй элемент 1-го периода гелий в соответствии с представлениями метода МО может образовывать парамагнитный молекулярный ион (n=0,5), а молекула Не 2 существовать не может, т.к. число электронов на связывающей и разрыхляющей молекулярных орбиталях одинаково и порядок связи равен нулю.

    Двухатомные гомоядерные молекулы элементов 2-го периода . Рассмотрим в качестве примера молекулу кислорода. Двенадцать электронов внешних уровней двух атомов кислорода (2s 2 2p 4) заполнят молекулярные орбитали следующим образом:

    О 2 .

    Cимвол К в электронной формуле означает, что электроны К-уровня (1s 2) не участвуют в образовании молекулярных орбиталей. Молекулярная диаграмма молекулы кислорода представлена на рис. 6.14. В соответствии с правилом Гунда два электрона на орбиталях π2p x и π2p z являются неспаренными и молекула кислорода является парамагнитной, что подтверждено экспериментально. Отметим, что в рамках метода валентных связей невозможно объяснить парамагнетизм кислорода. Порядок связи в молекуле О 2 n=(8-4)/2=2.

    Рис. 6.14. Молекулярная диаграмма О 2

    Порядок связи в двухатомных гомоядерных молекулах элементов 2-го периода увеличивается от 1 у В 2 до 3 у N 2 , а затем уменьшается до 1 у F 2 . Образование молекул Be 2 и Ne 2 невозможно, т.к. порядок связи в этих молекулах равен нулю.

    Двухатомные гетероядерные молекулы элементов 2-го периода . Атомные орбитали различных атомов вносят различный вклад в молекулярные орбитали, или, что то же самое, коэффициенты с i в уравнениях

    ψ + = с 1 ψ А + с 2 ψ В;

    ψ - = с 3 ψ А – с 4 ψ В

    не равны единице. В связывающую орбиталь больший вклад вносит атомная орбиталь более электроотрицательного элемента, а разрыхляющую – АО более электроположительного элемента. Если атом В более электроотрицателен, чем атом А, то с 2 >с 1 , а с 3 >с 4 . Связывающие МО по энергии ближе к АО более электроотрицательного атома, а разрыхляющие – к АО более электроположительного атома.

    В качестве примера приведем молекулу СО. Десять электронов атомов углерода и кислорода разместятся по МО следующим образом:

    СО .

    Порядок связи в молекуле СО n=(8-2)/2=3. Молекула СО парамагнитна. Молекулярная диаграмма приведена на рис. 6.15.

    Рис. 6.15. Молекулярная диаграмма СО

    Металлическая связь

    Рабочая программа. Металлическая связь. Энергетическая зона, валентная зона, зона проводимости, запрещённая зона. Проводники, полупроводники, изоляторы.

    Металлы, составляющие большую часть периодической системы Д.И. Менделеева, обладают рядом особенностей:

    1) металлическим блеском, т.е. высокой отражательной способностью к свету;

    2) высокими тепло- и электропроводностями;

    3) пластичностью и ковкостью.

    Эти свойства металлов объясняются особым типом ковалентной связи, называемым металлической связью .

    С позиций метода молекулярных орбиталей кристалл металла представляет собой одну огромную молекулу. Атомные орбитали атома перекрываются с атомными орбиталями соседних атомов, образуя связывающие и разрыхляющие МО. Эти

    орбитали перекрываются, в свою очередь, с атомными орбиталями следующих соседей и т.д.

    В результате происходит перекрывание атомных орбиталей всех атомов, составляющих кристалл металла, и образуется огромное число МО, распространяющихся на весь кристалл (рис. 6.16).

    Металлы имеют высокие координационные числа, обычно 8 или 12, т.е. каждый атом окружен 8 или 12 соседями. Например, координационое число лития – 8. Следовательно, 2s-атомная орбиталь лития перекрывается с 2s-атомными орбиталями восьми соседних атомов, а те, в свою очередь, перекрыва- ются с атомными орбиталями своих соседей и т.д. В 1 моль ли-

    тия происходит перекрывание 6,02 . 10 23 атомных орбиталей с образованием такого же количества молекулярных орбиталей. Различие в энергиях этих орбиталей очень мало и составляет величину порядка 10 -22 эВ (10 -21 кДж). Молекулярные орбитали образуют энергетическую зону . Заполнение энергетической зоны электронами происходит в соответствии с правилами

    наименьшей энергии, правилом Гунда и запретом Паули. Следовательно, максимальное количество электронов в энергетической зоне, образованной s-электронами, составит 2N, где N – число атомов в кристалле. Соответственно, в зонах, образованных p-, d- и f-орбиталями, может находиться до 6N, 10N или 14N электронов.


    Рис. 6.16. Схема образования энергетической зоны

    Зона, заполненная электронами, осуществляющими химическую связь, называется валентной зоной . Эта зона может быть заполнена в различной степени, в зависимости от природы металла, его строения и т.д. Выше валентной зоны располагается свободная зона, называемая зоной проводимости . В зависимости от природы атомов и строения кристаллической решетки валентная зона и зона проводимости могут перекрываться или быть отделенными энергетическим разрывом, называемым запрещенной зоной . В случае перекрывания валентной зоны и зоны проводимости вещества относятся к металлам. Если ширина запрещенной зоны составляет ΔЕ=0,1÷3,0 эВ, то вещества относятся к полупроводникам, если ΔЕ>3 эВ – то к изоляторам.

    Валентная зона металлов обычно заполнена электронами неполностью. Поэтому перевод электронов в зону проводимости требует очень малой затраты энергии, что и объясняет высокие электро- и теплопроводность металлов.

    Межмолекулярная связь

    Рабочая программа. Межмолекулярная связь. Силы Ван-дер-Ваальса: ориентационные, индукционные, дисперсионные. Водородная связь. Влияние на физико-химические свойства веществ.

    Между электронейтральными атомами и молекулами в твердом, жидком и газообразном состояниях всегда действуют силы притяжения. Об этом свидетельствуют, например, неидеальность реальных газов, понижение температуры газов при расширении, существование благородных газов в конденсированном состоянии и др.

    Различают два типа межмолекулярных взаимодействий:

    1) силы Ван-дер-Ваальса;

    2) водородная связь.

    Иногда к межмолекулярным взаимодействиям относят донорно-акцепторную и металлическую связь.

    Силы Ван-дер-Ваальса. Основными свойствами сил Ван-дер-Ваальса являются невысокая энергия (до ~40 кДж/моль) и ненасыщаемость. Различают три типа сил Ван-дер-Ваальса: ориентационные, индукционные и дисперсионные.

    Ориентационное (диполь-дипольное) взаимодействие имеет место только между полярными молекулами. При достаточно малых расстояниях между молекулами противоположно заряженные концы диполей притягиваются, а одноименно заряженные – отталкиваются (рис. 6.17,а) Чем больше дипольные моменты молекул, тем сильнее ориентационное взаимодействие. Ориентационное взаимодействие ослабляется при увеличении температуры и расстояния между молекулами.

    Индукционное взаимодействие осуществляется между молекулами разной полярности. Под действием электрического поля более полярной молекулы неполярная или малополярная молекула поляризуется, т.е. в ней возникает (индуцируется) диполь или увеличивается дипольный момент (рис. 6.17,б). Энергия индукционного взаимодействия определяется величиной дипольного момента полярной молекулы, расстоянием между молекулами и поляризуемостью неполярной молекулы, т.е. ее способностью к образованию диполя под действием внешнего поля.

    Дисперсионное взаимодействие является наиболее универсальным, т.е. действует между любыми молекулами независимо от их полярности. Ядро атома и электрон образуют мгновенные диполи , индуцирующие мгновенные диполи у соседних частиц (рис. 6.17,в). Синхронное движение мгновенных диполей разных молекул ведет к понижению энергии системы и притяжению частиц. Энергия дисперсионного взаимодействия увеличивается с ростом поляризуемости частиц, уменьшением расстояния между ними и не зависит от температуры.

    Рис. 6.17. Вандерваальсовы взаимодействия: а – ориентационное; б – индукционное; в – дисперсионное

    Энергия вандерваальсовых взаимодействий обратно пропорциональна шестой степени расстояния между центрами взаимодействующих частиц. При сильном сближении молекул начинают действовать силы отталкивания между электронными оболочками, которые уравновешивают силы притяжения.

    Относительные величины различных типов вандерваальсова взаимодействия для некоторых веществ приведены в табл. 6.1.

    Таблица 6.1. Вклад отдельных составляющих в энергию вандерваальсова взаимодействия

    Из табл. 6.1 следует, что увеличение дипольного момента ведет к росту ориентационного и индукционного взаимодействий, а увеличение поляризуемости сопровождается усилением дисперсионного взаимодействия.

    Водородная связь является особым типом межмолекулярного взаимодействия, который имеет место между молекулами соединений, содержащих группировки F-H, O-H, N-H, т.е. атом водорода и элемент с очень высокой электроотрицательностью.

    Электронная плотность связи Э-Н смещена в сторону электроотрицательного элемента. Атом водорода теряет электронную оболочку и превращается в протон. Благодаря своим малым размерам и отсутствию отталкивания электронных оболочек, протон способен вступать в электростатическое взаимодействие с электронной оболочкой сильно электроотрицательного атома соседней молекулы. Одновременно водород выступает в роли акцептора электронной пары, предоставляемой электроотрицательным атомом соседней молекулы.

    .

    Силы Ван-дер-Ваальса и отталкивания также вносят вклад в образование водородной связи.

    В отличие от сил Ван-дер-Ваальса водородная связь обладает свойствами направленности и насыщаемости.

    Энергия водородной связи невелика, составляет от 8 до 40 кДж/моль и возрастает в ряду N-H < O-H < F-H. Тем не менее наличие водородной связи оказывает сильное влияние на физико-химические свойства веществ. Так, молекула воды может участвовать в образовании четырех водородных связей. Это ведет к образованию прочных ассоциатов (Н 2 О) n , что объясняет высокую температуру плавления и кипения воды по сравнению с ее аналогом – H 2 S (t кип =-61,8 о С), высокую теплоёмкость (4,218 кДж/кг К при температуре 273К), высокую энтальпию испарения (2250 кДж/кг). Сероводород как соединение с более высокой молекулярной массой должен был бы иметь более высокую температуру кипения, чем вода. Отсутствие сильных водородных связей у H 2 S приводит к обратной зависимости.

    Водородная связь объясняет образование ассоциатов фторида водорода (HF) n , димеризацию карбоновых кислот:

    Очень многие химические соединения содержат химические связи N-H и O-H, следовательно, водородные связи встречаются очень часто. Особо важную роль водородные связи играют для биологических объектов. Так, двойные спирали ДНК соединяются межмолекулярными водородными связями.

    Вопросы для самостоятельной подготовки

    1.Рассмотрите образование ковалентной связи на примере молекулы водорода. Приведите график зависимости потенциальной энергии системы из двух атомов водорода от межъядерного расстояния.

    2. Как объяснить большую устойчивость молекулы F 2 по сравнению с системой из двух свободных атомов фтора?

    3.Приведите электронные структуры атомов элементов 2-го периода в основном и возбужденном состояниях.

    4. Почему атом аргона не образует химических связей?

    5. Почему атом кислорода образует 2 химические связи, а атом серы – 6?

    6. Гибридизация атомных орбиталей. Факторы, благоприятствующие гибридизации. Ориентация гибридных орбиталей в пространстве. sp-, sp 2 -, sp 3 - и sp 3 d 2 - гибридизация.

    7. Приведите примеры влияния несвязывающих (неподелённых) электронных пар на стереохимию молекул.

    8. Как влияет положение элемента в ПСЭМ на устойчивость гибридизации атомных орбиталей? Приведите примеры.

    9. Определите тип гибридизации орбиталей центрального атома в ионе гидроксония Н 3 О + . Изобразите геометрическую форму этой частицы.

    10. В чём особенности донорно-акцепторного механизма образования ковалентной связи? Приведите примеры частиц, способных играть роль донора и акцептора электронной пары.

    11. Какие факторы влияют на энергию химической связи?

    12. Расположите следующие соединения в порядке возрастания длины связи: NaH, NaF, NaCl, NaBr.

    13. Расположите следующие связи в порядке увеличения их энергии: а) О-О; О=О; б)О-О; S-S; в)Н-F; H-Cl; H-Br; г)Li-H; Be-H; B-H; C-H.

    14. Какая из связей прочнее: а) C-F или C-Br; б) C=O или С-О; в) O=O или S=S?

    15. В каких из следующих соединений связь центрального атома является насыщенной: а) IF 3 ; IF 5 ; IF 7 ; б)Cl 2 O; ClO 2 ; Cl 2 O 7 ?

    16. Определите координационное число атома алюминия в соединениях: а) Li; б) Na 3 .

    17. Расположите следующие химические связи в порядке увеличения полярности: Na-O; Na-F; Na-N.

    18. Какая из молекул HF, HCl, HBr, HI имеет наибольшую длину диполя?

    19. Как изменяется полярность связи в ряду HF, HCl, HBr, HI?

    20. Какие факторы влияют на величину дипольного момента следующих молекул: а) NH 3 , б) РН 3 , в) AsH 3 ? Какая из этих молекул может иметь наибольший дипольный момент?

    21. Какой тип связи реализуется в следующих молекулах: HCl, Cl 2 , RbСl, ClF?

    22. Расположите следующие ионы в порядке уменьшения их поляризующей способности: Na + ; Mg 2+ ; Al 3+ .

    23. Расположите следующие ионы в порядке увеличения их поляризуемости:F - ; Cl - ; Br - ;I - .

    24. В водном растворе какой соли связь О-Н в молекуле воды будет поляризована в большей степени: NaCl; MgCl 2 ; AlCl 3 ? Почему?

    25. В чем причина роста силы галогенводородных кислот, наблюдающегося при увеличении порядкового номера атома галогена?

    26. В чем причина увеличения силы гидроксидов щелочных и щелочноземельных элементов, наблюдающегося при увеличении заряда ядра атомов металла?

    27. Почему серная кислота сильнее сернистой?

    28. Почему уксусная кислота СН 3 СООН намного слабее трифторуксусной кислоты СF 3 СООН?

    29. Определите сколько σ- и π-связей содержит молекула бутадиена CH 2 CHCHCH 2 ?

    Ответ: 9 σ- и 2 π-связи.

    30. Определите сколько σ- и π-связей содержит молекула винилацетилена CHCCHCH 2 ?

    Ответ: 7 σ- и 3 π-связи.

    31. Изложите основные положения метода молекулярных орбиталей.

    32. В чём состоит основное отличие метода МО от метода ВС?

    33. Составьте электронную формулу и приведите молекулярную диаграмму молекулы азота. Определите порядок связи и укажите магнитные характеристики молекулы.

    34. Составьте электронную формулу и приведите молекулярную диаграмму молекулы фтора. Определите порядок связи и укажите магнитные характеристики молекулы.

    35. Составьте электронную формулу и приведите молекулярную диаграмму молекулы оксида азота (II). Определите порядок связи и укажите магнитные характеристики молекулы.

    36. Объясните с позиций метода молекулярных орбиталей увеличение энергии связи в ряду фтор, кислород, азот.

    37. Как изменится энергия химической связи при переходе от F 2 к и ?

    38. Какая из перечисленных молекул не должна существовать: а) С 2 , б) Li 2 , в) Ве 2 , г) В 2 ?

    39. Какие физические свойства характерны для металлов?

    40. Опишите особенности химической связи в металлах и её характеристики.

    41. В чём причины различия электропроводностей металлов, полупроводников и изоляторов?

    42. Приведите примеры физических явлений, указывающих на наличие взаимодействий между нейтральными атомами и молекулами.

    43. Опишите механизм возникновения и характеристики вандерваальсовых взаимодействий.

    44. Какие типы вандерваальсовых взаимодействий могут иметь место для следующих веществ: гелия, метана, азота, бромистого водорода?

    45. Какой тип сил Ван-дер-Ваальса преобладает в каждом из следующих веществ: O 2 , H 2 O, OF 2 ?

    46. Опишите взаимодействия, вносящие свой вклад в образование водородной связи.

    47. Какой тип связи реализуется при образовании иона Н 3 О + из протона и молекулы воды?

    48. Для каких из следующих соединений возможны водородные связи: SiH 4 , HCOOH, CH 3 CH(NH 2)COOH, H 2 O 2 , HCl?

    49. Почему температура кипения аммиака NH 3 выше, чем у фосфина PH­ 3 ?

    50. Почему одноосновная фтористоводородная кислота может образовывать кислые соли, например NaHF 2 , а соляная кислота аналогичные соединения не образует?

    6.6. Задания для текущих и промежуточных контролей

    1. Объясните термин «перекрывание атомных орбиталей».

    2. Можно ли сказать, что благородные газы He, Ne и другие состоят из молекул?

    3. Почему хлорводородная кислота сильнее фторводородной?

    4. Что является причиной образования любой химической связи? Каким энергетическим эффектом сопровождается этот процесс?

    5. Как изменяется прочность связи в ряду HF, HCl, HBr, HI? Укажите причины этих изменений.

    6. Предскажите, какая из связей прочнее: а) С – F или C – Br; б) С = О или С – О; в) О – О или S – S.

    7. Расположите следующие связи в порядке увеличения полярности: Na – O, Na – F, Na – N.

    8. Расположите указанные связи в порядке возрастания полярности: а) H – F, H – C, H – H; б) P – S, Si – Cl, Al – Cl.

    9. Как называется расстояние между центрами ядер атомов в молекуле и каким образом оно влияет на прочность химических связей?

    10. Почему и как влияет размер атомов на длину и энергию образующейся между ними связи?

    11. Чем объясняется большая устойчивость системы из двух связанных атомов (например, Н 2) по сравнению с системой из двух свободных атомов (2Н)?

    12. Чем объясняется способность атомов многих элементов к образованию числа связей, превышающих число неспаренных электронов в их атомах в основном состоянии?

    13. Укажите факторы, способствующие гибридизации атомных орбиталей.

    14. Объясните, каким образом атом углерода, имеющий два неспаренных электрона, может проявлять ковалентность, равную четырем?

    15. Сравните механизм образования ковалентных связей в молекулах СН 4 , NH 3 и в ионе .

    16. Приведите схему перекрывания атомных орбиталей в молекулах BeCl 2 и BF 3 .

    17. Какая из молекул HF, HCl, HBr или HI имеет наибольшую длину диполя?

    18. Расположите указанные связи в порядке возрастания полярности:

    а) H – F, F – C, F – F;

    б) C – N, B – O, Li – l;

    в) P – S, Si – Cl, Al – Cl

    19. Расположите в порядке возрастания степени ионности связи В – Cl, Na – Cl, Ca – Cl, Be – Cl.

    20. Для каких связей длина диполя а) равна нулю; б) меньше длины связей; в) равна длине связей?

    21. Укажите донор и акцептор в реакции Н 2 О + Н + = Н 3 О + .

    22. Какая из следующих молекул должна иметь наибольший дипольный момент: NH 3 , PH 3 , AsH 3 , BH 3 ?

    23. Какая связь называется водородной? Как она влияет на физические свойства веществ?

    24. Рассмотрите с позиций метода МО частицу . Может ли эта частица существовать? Каков порядок связи и магнитные свойства этой частицы?

    25. Рассмотрите с позиций метода МО частицу . Может ли эта частица существовать? Каков порядок связи и магнитные свойства этой частицы?

    26. Рассмотрите с позиций метода МО частицу . Может ли эта частица существовать? Каков порядок связи и магнитные свойства этой частицы?

    27. Рассмотрите с позиций метода МО частицу . Может ли эта частица существовать? Каков порядок связи и магнитные свойства этой частицы?

    28. Рассмотрите с позиций метода МО частицу . Может ли эта частица существовать? Каков порядок связи и магнитные свойства этой частицы?

    29. Рассмотрите с позиций метода МО молекулу . Каков порядок связи и магнитные свойства этой молекулы?

    30. Рассмотрите с позиций метода МО молекулу . Каков порядок связи и магнитные свойства этой молекулы?

    Библиографический список

    1.Пирогов, А.И. Общая химия: учеб. пособие /А.И. Пирогов; Иван. гос. энерг. ун-т. – Иваново,2010. – 220 с.

    2.Пирогов, А.И., Общая химия: учеб.-метод. программированное пособие/А.И. Пирогов,А.В. Ионов; Иван. гос. энерг. ун-т. – Иваново,2012. – 76 с.

    3.Пакет заданий по текущим и промежуточным контролям: метод. разработка для студентов I курса / И.М. Арефьев [и др.] ; под ред. А.И. Пирогова; Иван. гос. энерг. ун-т. – Иваново, 2011. – 72 с.

    4.Методические указания к выполнению лабораторных работ по общей химии/ В.К. Абросимов [и др.]; под ред. В.К. Абросимова; Иван. гос. энерг. ун-т. – Иваново, 2000. – 44 с.

    5.Коровин, Н.В. Общая химия (бакалавриат)/ Н.В. Коровин. – 13-е изд. – М.: Академия, 2011. – 496 с.

    6. Задачи и упражнения по общей химии: учеб. пособие / Б.И. Адамсон [и др.] ; под ред. Н.В. Коровина. – 3-е изд. – М.: Высш. шк., 2006. – 255 с.

    7.Коровин, Н.В. Лабораторные работы по химии: учеб. пособие для вузов/Н. В. Коровин [и др.] – 4-е изд.– М.: Высш. шк., 2007 – 256 с.

    8.Глинка, Н.Л. Общая химия: учеб. для бакалавров / Н.Л. Глинка; под. ред. В.А. Попкова, А.В. Бабкова. – 19-е изд., перераб. и доп. – М.: Юрайт, 2014. – 900 с. – (Серия «Бакалавр. Базовый курс»).

    9.Глинка, Н.Л. Задачи и упражнения по общей химии: учеб.-практ. пособие для бакалавров / Н.Л. Глинка; под. ред. В.А.Попкова, А.В. Бабкова. – 14-е изд. – М.: Юрайт, 2014. – 236 с. – (Серия «Бакалавр. Базовый курс»).

    10.Глинка, Н.Л. Практикум по общей химии: учеб. пособие для академ. бакаравриата / Н.Л. Глинка; под. ред. В.А. Попкова, А.В. Бабкова, О.В. Нестеровой. – М.: Юрайт, 2014. – 248 с. – (Серия «Бакалавр. Академический курс»).

    11.Степин, Б.Д. Применение международной системы единиц физических величин в химии / Б.Д. Степин. – М.: Высш. шк., 1990. – 96 с.

    Хронологически метод МО появился позже метода ВС, по­скольку оставались в теории ковалентной связи вопросы, кото­рые не могли получить объяснение методом ВС. Укажем некото­рые из них.

    Как известно, основное положение метода ВС состоит в том, что связь между атомами осуществляется за счет электронных пар (свя­зующих двухэлектронных облаков). Но это не всегда так. В ряде слу­чаев в образовании химической связи участвуют отдельные элек­троны. Так, в молекулярном ионе Н 2 + одноэлектронная связь. Ме­тод ВС образование одноэлектронной связи объяснить не может, она противоречит его основному положению.

    Метод ВС не объясняет также роли неспаренных электронов в мо­лекуле. Молекулы, имеющие неспаренные электроны, парамагнитны , т. е. втягиваются в магнитное поле, так как неспаренный электрон создает постоянный магнитный момент. Если в молекулах нет неспа­ренных электронов, то они диамагнитны – выталкиваются из магнит­ного поля. Молекула кислорода парамагнитна, в ней имеется два электрона с параллельной ориентацией спинов, что противоречит методу ВС. Необходимо также отметить, что метод ВС не смог объяснить ряд свойств комплексных соединений – их цветность и др.

    Чтобы объяснить эти факты, был предложен метод молекулярных орбиталей (ММО).

    4.5.1. Основные положения ммо, мо.

    1. В молекуле все электроны являются общими. Сама молекула - это единое целое, совокупность ядер и электронов.

    2. В молекуле каждому электрону соответствует молекулярная орбиталь, подобно тому как каждому электрону в атоме соответствует атомная орбиталь. И обозначения орбиталей аналогичны:

    АО s, p, d, f

    МО σ, π, δ, φ

    3. В первом приближении молекулярная орбиталь представляет собой линейную комбинацию (сложение и вычитание) атомных орби­талей. Поэтому говорят о методе МО ЛКАО (молекулярная орбиталь есть линейная комбинация атомных орбиталей), при которой из N АО образуется N МО (это основное положение метода).

    Рис. 12. Энергетическая

    схема образо­вания моле-

    кулы водорода Н 2

    Рассмотрение химических связей в методе МО заключается в рас­пределении электронов в молекуле по ее орбиталям. Последние за­полняются в порядке возраста­ния энергии и с учетом принципа Паули. В этом методе пред­полагается увеличение электрон­ной плотности между ядрами при образовании ковалентной связи.

    Пользуясь положениями 1-3, объясним образование молекулы H 2 с точки зрения метода МО. При достаточном сближении ато­мов водорода происходит перекрывание их электронных орби­талей. Согласно п. 3 из двух одинаковых ls-орбиталей образуются две молекуляр­ные орбитали: одна из них от сложения атомных орбиталей, другая от их вычитания (рис.12). Энергия первой E 1 < E 2 , а энергия второй E 2 < E 3 .

    Молекулярная орбиталь, энергия которой меньше энергии атом­ной орбитали изолированного атома, называется связывающей (обозна­чается символом св), а находящиеся на ней электроны-связываю­щими электронами.

    Молекулярная орбиталь, энергия которой больше энергии атомной орбитали, называется антисвязывающей или раз­рыхляющей (обозначается символом разр), а находящиеся на ней электроны - разрыхляющими электронами.

    Если у соединяющихся атомов водорода спины электронов антипараллельны, то они займут связывающую МО, возникает химиче­ская связь (рис. 12), сопровождающаяся выделением энергии E 1 (435 кДж/моль). Если же спины электронов атомов водорода параллельны, то они в соответствии с принципом Паули не могут разместиться на одной молекулярной орбитали: один из них раз­местится на связывающей, а другой на разрыхляющей орбитали, значит химическая связь образоваться не может.

    Согласно методу МО образование молекул возможно, если число электронов на связывающих орбиталях больше числа электронов на разрыхляющих орбиталях. Если же число электронов на связы­вающих и разрыхляющих орбиталях одинаково, то такие молекулы образоваться не могут. Так, теория не допускает существования моле­кулы Нe 2 , так как в ней два электрона находились бы на связываю­щей орбитали и два - на разрыхляющей. Всегда разрыхляющий электрон сводит на нет действие связывающего электрона.

    В системе обозначений метода МО реакцию образования моле­кулы водорода из атомов записывают так:

    2H = H 2 [(σ CB 1s) 2 ],

    т.е. используются символы, выражающие размещение электронов на атомных и молекулярных орбиталях. При этом символ каждой МО заключается в круглые скобки и над скобками справа проставляется число электронов на этой орбитали.

    Число валентных связей опреде­ляется по формуле:

    где: В – число связей;

    N СВ N РАЗР – соответственно число связываю­щих и разрыхляющих электронов в молекуле.

    В молекуле водорода В = (2-0) : 2=1, водород одновалентен. Молекула Н 2 диамагнитна (электроны спарены).

    Теперь легко объясняется одноэлектронная связь в молекуляр­ном ионе Н 2 + (рис.13). Единственный электрон этого иона занимает энергетически наиболее выгодную орбиталь св 1s. Уравнение процесса:

    H + H + = H 2 + [(σ св 1s) 1 ], ∆H = - 259,4 кДж


    Рис. 13. Энергетическая схема Рис. 14. Энергетическая схема

    образования молекулярного образования дигелий-иона Hе 2

    иона водорода H 2

    Число связей в ионе H 2 + равно ½ (связь одним электроном). Ион H 2 + - парамагнитен (имеет один неспаренный электрон).

    Возможно существование молекулярного дигелий иона Не 2 + (рис.14). Уравнение его образования

    He + He + = He 2 + [(σ CB 1s) 2 (σ разр 1s) 1 ], ∆H = - 292,8 кДж

    Этот ион экспериментально обнаружен. Число связей в нем

    Рис. 15 . Энергетическая схема образования двухатом­ных гомонуклеарных молекул элементов второго пе­риода

    (2-1) : 2 = 1 / 2 . Ион- парамагнитен (имеет неспаренный электрон).

    4.5.2. Основные двухатомные гомонуклеарные молекулы элементов 2-го периода. Рассмотрен­ный принцип построения МО из двух одинаковых АО сохраняется при построении гомонуклеарных молекул элементов 2-го периода системы Д.И. Менделеева. Они образуются в результате взаимодействия 2s- и 2р x -, 2р y - и 2р z -орбиталей.

    Участием внутренних электронов 1s-орбиталей можно пренебречь (на последующих энергети­ческих схемах они не учтены). 2s-орбиталь одного атома взаимодействует только с 2s-орбиталью другого атома (должна быть близость значений энергий взаимодей­ствующих орбиталей), образуя МО σ 2 s св и σ 2 s разр. При перекрывании (взаимодействии) 2р-орбиталей обоих атомов образуются МО: σ х св, σ х разр, π у св, π у разр, π z св, π z разр

    (

    Рис. 16. Энергети-ческая схема об-разования моле-кулы Li 2

    рис.15). Т.е. из шести исходных 2р-орбиталей образуется шесть МО – три связывающих и три разрыхляющих. МО, образующиеся изs - и р x -атомных орбиталей, обозначаются буквой , а из р у - и р z - – буквой . С помощью рис. 15 легко представить электронные конфигурации этих молекул в системе обозначений метода МО.

    Пример 1. Молекула лития Li 2 . Схема ее образования представлена на рис.16. В ней два связывающих электрона, молекула диамагнитна (электроны спарены). Написание уравнения и формулы можно упростить, обозначив внутренний уровень через K:

    2Li = Li 2

    Число связей равно 1.

    Пример 2. Молекула бериллия Be 2 . Восемь электронов молекулы размещены на МО следующим образом:

    Ве 2

    Как видно, число связей в молекуле равно нулю: два разрыхляющих электрона уничтожают действие двух связывающих. Такая молекула не может существовать, и она до сих пор не обнаружена. Необходимо отметить, что невозможны двухатомные молекулы у всех элементов IIА-группы, палладия и инертных элементов, так как их атомы имеют замкнутую электронную структуру.

    Пример 3. Молекула азота N 2 (рис. 17). Распределение 14 электронов по МО записывается так:

    N 2 [(σ CB 1s) 2 (σ разр 1s) 2 (σ CB 2s) 2 (σ разр 2s) 2 (π CB 2p y) 2 (π CB 2p z) 2 (σ CB 2p x) 2 ]

    или сокращенно:

    N 2 [КК (σ s CB)2 (σ s разр)2(π y CB)2(π z CB)2(σ x CB)2]

    1 -1 +1 +1 +1=3

    Рис. 17. Энергетическая схема образования молекулы N 2

    Под формулой указано число связей в молекуле, исходя из расчета, что два электрона, расположенные на одной МО, образуют валентную связь; знак плюс обозначает связующие орбитали, знак минус – разрыхляющие. Число связей в молекуле 3. нет неспаренных электронов – молекула диамагнитна.

    Пример 4. Молекула O 2 (рис. 18). Электроны размещаются по МО в последовательности:

    O 2 [КК(σ s CB)2(σ s разр)2(π y CB)2(π z CB)2(σ x CB)2(π y разр)1(π z разр)1]

    1 -1 +1 +1 +1 - 1 / 2 - 1 / 2 =2

    Рис. 18. Энергетическая схема образования молекулы O 2

    В молекуле две валентные связи. Послед-ние два электрона размес-тились на различных π-разрыхляющих орбиталях в соответствии с правилом Гунда. Два неспаренных электрона обусловливают парамагнетизм молекулы кислорода.

    4.5.3. Двухатомные гетеронуклеарные молекулы элементов 2-го периода. Энерге­тическая схема образования МО гетеронуклеарных двухатомных молекул, состоящих из атомов элементов 2-го периода, представлена на рис. 19. Она сходна со схемой образования МО гомонуклеарных молекул.

    Основное различие сводится к тому, что значения энергии одноименных орбиталей атомов разных элементов не равны между собой, поскольку различны заряды ядер атомов. В качестве примера рассмотрим электронную валентную конфи-гурацию молекул СО и NO.

    Рис. 19 . Энергетическая схема образования двух атомных гетеро-нуклеарных молекул элементов второго периода

    Пример 5 . Молекула СО. Внешняя электронная оболочка атома углерода имеет кон­фигурацию 2s 2 2p 2 , а кислорода 2s 2 2p 4 . Стало быть, в заполнении МО молекулы СО принимают участие 4+6=10 электронов. Из них два размещаются на орбитали σ 2 s св, два – на орбитали σ 2 s разр, четыре – на орбиталях π y CB и π z CB , а девятый и десятый – на σ х св. Таким образом, электронную валентную конфигурацию молекулы СО можно выразить формулой:

    СО[КК(σ s CB)2 (σ s разр)2(π y CB)2(π z CB)2 (σ х CB)2]

    1 -1 +1 +1 +1=3

    Как и предусматривалось теорией ВС, в молекуле СО три валентные связи (сравните с N 2). Молекула диамагнитна – все электроны спарены.

    Пример 6. Молекула NO. На МО молекулы оксида азота (II) должны разместиться 11 электронов: пять азота – 2s 2 2p 3 и шесть кислорода – 2s 2 2p 4 . Десять изних разме­щаются так же, как и электроны молекулы оксида углерода (II) (пример 5), а одиннадца­тый разместится на одной из разрыхляющих орбиталей – π y разр или π Z разр (эти ор­битали энергетически эквивалентны между собой). Тогда

    NО[КК(σ s CB)2(σ s разр)2(π y CB)2(π z CB)2(σ х CB)2(π y разр)1]

    1 -1 +1 +1 +1 - 1 / 2 =2 1 / 2

    Значит, молекула NO имеет две с половиной валентные связи, энергия связи боль­шая - 677,8кДж/моль. Она парамагнитна, так как содержит один неспаренный электрон.

    Приведенные примеры служат иллюстрацией возможностей метода МО в объяснении строения и свойств молекул.

    Пример 7. Какую валентность, обусловленную неспаренными электронами (спинвалентность), может проявлять фосфор в нормальном и возбужденном состояниях?

    Решение. Распределение электронов внешнего энергетического уровня фосфора 3s 2 3р 3 (учитывая правило Хунда,
    ) по квантовым ячейкам имеет вид:

    3s 3рx 3py 3pz

    Атомы фосфора имеют свободные d-орбитали, поэтому возможен переход одного 3s-электрона в 3d-состояние:

    3s 3px 3py 3pz 3dxy

    Отсюда валентность (спинвалентность) фосфора в нормальном состоянии равна трем, а в возбужденном - пяти.

    Пример 8 . Что такое гибридизация валентных орбиталей? Какое строение имеют молекулы типа АВ n , если связь в них образуется за счет sp -, sp 2 -, sp 3 -гибридизации орбиталей атома А?

    Решение. Теория валентных связей (ВС) предполагает участие в образовании ковалентных связей не только чистых АО, но и смешанных, так называемых гибридных, АО. При гибридизации первоначальная форма и энергия орбиталей (электронных облаков) взаимно изменяются и образуются орбитали (облака) новой одинаковой формы и с одинаковой энергией. Число гибридных орбиталей (q) равно числу исходных. Ответ см. в табл. 13.

    Метод молекулярных орбиталей основан на предположении, что электроны в молекуле расположены на молекулярных орбиталях, аналогично атомным орбиталям в изолированном атоме . Каждой молекулярной орбитали соответствует определенный набор молекуляр-ных квантовых чисел. Для молекулярных орбиталей сохраняет справед-ливость принцип Паули, т.е. каждой молекулярной орбитали может находиться не более двух электронов с антипараллельными спинами.

    В общем случае, в многоатомной молекуле электронное облако принадлежит одновременно всем атомам, т.е. участвует в образовании многоцентровой химической связи. Таким образом, все электроны в молекуле принадлежат одновременно всей молекуле, а не являются собственностью двух связанных атомов . Следовательно, молекула рассматривается как единое целое, а не как некая совокупность индивидуальных атомов .

    В молекуле, как и в любой системе из ядер и электронов, состояние электрона на молекулярных орбиталях должно описываться соответствую-щей волновой функцией. В наиболее распространенном варианте метода молекулярных орбиталей волновые функции электронов находят, представляя молекулярную орбиталь как линейную комбинацию атомных орбиталей (сам вариант получил сокращенное наименование «МОЛКАО»).

    В методе МОЛКАО полагают, что волновая функция y , отвечаю-щая молекулярной орбитали, может быть представлена в виде суммы:

    y = с 1 y 1 + с 2 y 2 + ¼ + с n y n

    где y i – волновые функции, характеризующие орбитали взаимо-действующих атомов;

    с i – числовые коэффициенты, введение которых необходимо потому, что вклад различных атомных орбиталей в суммарную мо- лекулярную орбиталь может быть различным.

    Поскольку квадрат волновой функции отражает вероятность нахождения электрона в какой-либо точке пространства между взаимодействующими атомами, представляет интерес выяснить, какой вид должна иметь молекулярная волновая функция. Проще всего решить этот вопрос в случае комбинации волновых функций 1s-орбиталей двух одинаковых атомов:

    y = с 1 y 1 + с 2 y 2

    Поскольку для одинаковых атомов с 1 = с 2 = с, следует рассмотреть сумму

    y = с 1 (y 1 + y 2)

    Постоянная с влияет только на величину амплитуды функции, следовательно, для нахождения формы орбитали достаточно выяснить, что будет представлять собой сумма y 1 и y 2 .

    Расположив ядра двух взаимодействующих атомов на расстоянии, равном длине связи, и изобразив волновые функции 1s-орбиталей, произведем их сложение. При этом оказывается, что в зависимости от знаков волновых функций, их сложение дает различные результаты. В случае сложения функций с одинаковыми знаками (рис. 4.15, а) значения y в межъядерном пространстве больше, чем значения y 1 и y 2 . В противоположном случае (рис. 4.15, б) суммарная молекулярная орбиталь характеризуется уменьшением абсолютной величины волновой функции в межъядерном пространстве по сравнению с волновыми функциями исход-ных атомов.

    y 2
    y 1



    Рис. 4.15. Схема сложения атомных орбиталей при образовании

    связывающей (а) и разрыхляющей (б) МО

    Поскольку квадрат волновой функции характеризует вероятность нахождения электрона в соответствующей области пространства, т.е. плотность электронного облака, это означает, что в первом варианте сложения волновых функций плотность электронного облака в межъядерном пространстве увеличивается, а во втором – уменьшается.

    Таким образом, сложение волновых функций с одинаковыми знаками приводит к возникновению сил притяжения положительно заряженных ядер к отрицательно заряженной межъядерной области и образованию химической связи. Такая молекулярная орбиталь называется связывающей , а электроны, находящиеся на ней - связывающими электронами .

    В случае сложения волновых функций разных знаков притяжение каждого ядра в направлении межъядерной области ослабевает, и преобладают силы отталкивания - химическая связь не укрепляется, а образовавшаяся молекулярная орбиталь называется разрыхляющей (электроны, на ней расположенные – разрыхляющими электронами ).

    Аналогично атомным s-, p-, d-, f- орбиталям, МО обозначают s- , p- , d- , j- орбитали . Возникающие при взаимодействии двух 1s-орбиталей молекулярные орбитали обозначают: s -связывающая и s (со звездочкой) - разрыхляющая . При взаимодействии двух атомных орбиталей всегда образуются две молекулярные - связывающая и разрыхляющая.

    Переход электрона с атомной 1s- орбитали на s - орбиталь, приводящий к образованию химической связи, сопровождается выделением энергии. Переход электрона с 1s-орбитали на s -орбиталь требует затраты энергии. Следовательно, энергия s -связывающей орбитали ниже, а s -разрых-ляющей – выше, чем энергия исходных атомных 1s-орбиталей, что принято изображать в виде соответствующих диаграмм (рис. 4.16).

    АО МО АО

    Рис. 4.16. Энергетическая диаграмма образования МО молекулы водорода

    Наряду с энергетическими диаграммами образования молекулярных орбиталей, интересен внешний вид молекулярных облаков, полученных путем перекрывания или отталкивания орбиталей взаимодействующих атомов.

    Здесь следует учесть, что взаимодействовать могут не любые орбитали, а лишь удовлетворяющие определенным требованиям.

    1. Энергии исходных атомных орбиталей не должны сильно отличаться друг от друга – они должны быть соизмеримы по величине.

    2. Атомные орбитали должны обладать одинаковыми свойствами симметрии относительно оси молекулы.

    Последнее требование приводит к тому, что могут комбинировать между собой, например, s – s (рис. 4.17, а), s – p x (рис. 4.17, б), р х – р х, но не могут s – p y , s – p z (рис. 4.17, в), т.к. в первых трех случаях обе орбитали при повороте вокруг межъядерной оси не меняют (рис. 3.17 а,б), а в последних случаях – изменяют знак (рис. 4.17, в). Это приводит, в последних случаях к взаимному вычитанию образующихся областей перекрывания, и оно не происходит.

    3. Электронные облака взаимодействующих атомов должны максимально перекрываться. Это означает, например, что невозможно комбинирование p x – p y , p x – p z или p y – p z орбиталей, не имеющих областей перекрывания.


    (а) (б) (в)

    Рис. 4.17. Влияние симметрии атомных орбиталей на возможность

    образования молекулярных орбиталей: МО образуются (а, б),

    не образуются (в)

    В случае взаимодействия двух s-орбиталей образующиеся s - и s -орбитали выглядят следующим образом (рис. 3.18)

    1s
    s 1
    1s

    +

    Рис. 4.18. Схема комбинирования двух 1s-орбиталей

    Взаимодействие двух p x -орбиталей также дает s-связь, т.к. возникающая связь направлена вдоль прямой, соединяющей центры атомов. Возникающие молекулярные орбитали обозначают соответст-венно s и s , схема их образования представлена на рис. 4.19.



    Рис. 4.19. Схема комбинирования двух p x -орбиталей

    При комбинации р у – р у или р z – p z -орбиталей (рис. 4.20) s-орбитали образоваться не могут, т.к. области возможного перекрывания орбиталей не расположены на прямой, соединяющей центры атомов. В этих случаях образуются вырожденные p у - и p z -, а также p - и p - орбитали (термин «вырожденные» обозначают в данном случае «одинаковые по форме и энергии»).

    Рис. 4.20. Схема комбинирования двух p z -орбиталей

    При расчетах молекулярных орбиталей многоатомных систем могут, кроме того, появиться энергетические уровни, лежащие посередине между связывающими и разрыхляющими молекулярными орбиталями . Такие МО называют несвязывающими .

    Как и в атомах, электроны в молекулах стремятся занять молекулярные орбитали, отвечающие минимальной энергии. Так, в молекуле водорода оба электрона перейдут с 1s-орбитали на связывающую s 1 s -орбиталь (рис. 4.14), что можно изобразить формульной записью:

    Как и атомные, молекулярные орбитали могут вмещать не более двух электронов.

    Метод МО ЛКАО не оперирует понятием валентности, но вводит термин «порядок», или «кратность связи».

    Порядок связи (Р) равен частному от деления разности числа связывающих и разрыхляющих электронов на число взаимодействующих атомов, т.е. в случае двухатомных молекул половине этой разности . Порядок связи может принимать целочисленные и дробные значения, в том числе и нуль (если порядок связи равен нулю, система неустойчива, и химическая связь не возникает).

    Следовательно, с позиции метода МО, химическую связь в молекуле H 2 , образованную двумя связывающими электронами, следует рассматри-вать как одинарную связь, что соответствует и методу валентных связей.

    Понятно, с точки зрения метода МО, и существование устойчивого молекулярного иона H . В этом случае единственный электрон переходит с атомной 1s-орбитали на молекулярную s 1 S -орбиталь, что сопровождает-ся выделением энергии и образованием химической связи с кратностью 0,5.

    В случаях молекулярных ионов H и He (содержащих три электрона) третий электрон помещается уже на разрыхляющую s -орбиталь (например, He (s 1 S) 2 (s ) 1), и порядок связи в таких ионах согласно определению 0,5. Такие ионы существуют, но связь в них слабее, чем в молекуле водорода.

    Поскольку в гипотетической молекуле Не 2 должно быть 4 электрона, они могут расположиться только по 2 на s 1 S - связывающей и s - разрыхляющей орбиталях, т.е. порядок связи равен нулю, и двухатомных молекул гелия, как и других благородных газов, не существует. Аналогично не могут образовываться молекулы Be 2 , Ca 2 , Mg 2 , Ba 2 и т.д.

    Таким образом, с точки зрения метода молекулярных орбиталей из двух взаимодействующих атомных орбиталей образуются две молекуляр-ные: связывающая и разрыхляющая. Для АО с главными квантовыми числами 1 и 2 возможно образование МО, представленных в табл. 4.4.

    Во всех рассуждениях о образовании ковалентных связей и геометрической структуре молекул по методу валентных связей был обойден вопрос: что заставляет атомы образовывать ковалентные связи ? Для этого необходимо обратиться к рассмотрению энергии.

    В атомах электроны (ē ) существуют в разрешенных энергетических состояниях – на А томных О рбиталях.

    Аналогично в молекулах ē существуют в разрешенных энергетических состояниях, которые называются М олекулярными О рбиталями и, т.к. молекулы сложнее атомов, то => МО сложнее АО.

    Большей предсказательной силой обладает метод молекулярных орбиталей (ММО), где:

    -молекула рассматривается как единая система ядер и электронов ;

    -электроны находятся в общем пользовании всех ядер атомов, образующих молекулу;

    Таким образом, метод МО химическую связь рассматривает как многоцентровую и многоэлектронную . В этом случае для приближенного решения уравнения Шредингера волновая функция пси ψ , соответствующая МО, задается как линейная комбинация АО, т. е. как сумма и разность атомных волновых функций с вариационными коэффициентами (с 1 , с 2), определяющими долю участия АО в построении МО или указывающими на долю их вклада в перекрывание электронных облаков.

    При сложении АО образование МО: ψ + = с 1 ψ 1 + с 2 ψ 2 ,

    При вычитании АО образуется МО: ψ - = с 3 ψ 1 – с 4 ψ 2 .

    МО также, как и АО характеризуются квантовыми числами:

    n главным, l побочным, m l магнитным, определяющими их энергию, число и ориентацию в пространстве: АО - s p d f , МО - σ π δ φ .

    Полученный метод получил название Линейной Комбинации Атомных Орбиталей (ЛКАО МО). В методе ЛКАО МО для образования устойчивой молекулярной орбитали необходимо, чтобы

    1) энергии атомных орбиталей были близки друг к другу ;

    2) чтобы их симметрия не сильно отличалась . При выполнении этих 2х требований коэффициенты c 1 и c 2 должны быть близкими по своим значениям, а это, обеспечивает мак симальное перекрывание АО.

    Если образуется МО, энергия которой понижается относительно энергий АО, то такая МО называется связывающей . Волновая функция, соответствующая связывающей МО, получается в результате сложения волновых функций с одинаковым знакомψ + = с 1 ψ 1 + с 2 ψ 2 . Электронная плотность при этом концентрируется между ядрами, и волновая функция принимает положительное значение .

    При вычитании волновых функций ψ - = с 3 ψ 1 – с 4 ψ 2 энергия МО повышается. Эта орбиталь называется разрыхляющей . Электронная плотность в этом случае располагается за ядрами, а между ними равна нулю. Волновая функция в двух образовавшихся электронных облаках имеет противоположные знаки, что хорошо видно из схемы образования связывающей и разрыхляющей орбиталей, приведенной на (презентация рис. 24,25):

    Рис. 24. Схема образования связывающей и разрыхляющей молекулярных орбиталей.

    Когда АО (презентация рис.26) одного из атомов вследствие большой разницы в энергии или симметрии не может взаимодействовать с АО другого атома, она переходит в энергетическую схему МО молекулы с энергией, соответствующей ей в атоме. Орбиталь этого типа называется несвязывающей .

    Классификация орбиталей на σ или π (презентация рис.27, 28) производится в соответствии с симметрией их электронных облаков аналогично σ - и π -связям в методе валентных связей:

    σ-орбиталь имеет такую симметрию электронного облака, при которой поворот ее вокруг оси, соединяющей ядра, на 180 0 приводит к орбитали, по форме не отличимой от первоначальной. Знак волновой функции при этом не меняется;

    π -орбитали - при повороте ее на 180 0 знак волновой функции меняется на противоположный.

    Отсюда следует, что

    s-электроны атомов при взаимодействии между собой могут образовывать только σ -орбитали ,

    а три p-орбитали атома – одну σ- и две π -орбитали , причем σ –орбиталь возникает при взаимодействии p Х атомных орбиталей, а π -орбиталь – при взаимодействии p Y иp Z . Молекулярные π -орбитали повернуты относительно межъядерной оси на 90 0 . Здесь наблюдается полная аналогия с методом валентных связей (презентация рис.29).

    Рис. 29. Схема образования связывающих и разрыхляющих МО

    для 2р-атомных орбиталей.

    Для того чтобы отличать связ ывающие и разр ыхляющие орбитали друг

    от друга, а также их происхождение, принята следующая система обозначений . Связывающая орбиталь обозначается сокращением «св» , располагающимся справа вверху после греческой буквы, обозначающей орбиталь, а разрыхляющая – соответственно «разр» .

    Принято еще одно обозначение: звездочкой * помечаются разрыхляющие орбитали, а без звездочки – связывающие. После обозначения МО пишется обозначение АО, которой молекулярная обязана своим происхождением, например, π разр 2p у. Это означает, что молекулярная орбиталь π-типа, разрыхляющая, образовалась при взаимодействии 2 p у -атомных орбиталей (рис. 29):

    При рассмотрении электронного строения молекулы с точки зрения метода молекулярных орбиталей (ММО) нужно руководствоваться следующими правилами:

    1. Электроны в молекуле, как и в атоме, занимают соответствующие

    орбитали, которые характеризуются своим набором квантовых чисел ;

    2. Число образующихся МО равно числу исходных АО;

    3. Энергии связывающих МО ниже энергий АО, а энергии разрыхляющих МО – выше энергий АО, принимающих в образовании связей.

    4. Электроны размещаются на МО согласно принципу наименьшей энергии (прав. Клечковского), принципу Паули, правилу Гунда.

    5. Химическая связь между атомами образуется, если число электронов на связывающих МО больше числа электронов на разрыхляющих МО.

    6. Для молекул, образованных атомами одного химического элемента

    (гомоядерных ), выигрыш в энергии за счет образования связывающей МО компенсируется повышением энергии разрыхляющей МО.

    На энергетической диаграмме обе орбитали располагаются симметрично

    относительно атомных орбиталей (презентация рис.32, 33):

    Рис. 33. Энергетическая диаграмма молекулярных орбиталей

    для гомоядерных молекул (на примере молекулы водорода)

    7. Для молекул, образованных разноэлементными атомами (гетероядерных ), связывающие орбитали по энергии ближе к орбиталям более электроотрицательного атома (B) , а разрыхляющие – ближе к орбитали менее электроотрицательного атома (A) . Разность в энергиях исходных атомных орбиталей (отрезок b) равна ∆ полярности связи, эта разность является мерой ионности связи. Разность в энергиях между связывающей орбиталью и атомной орбиталью (отрезок с) более электроотрицательного атома определяет ковалентность связи. (презентация рис.34):

    Рис. 34. Энергетическая диаграмма молекулярных орбиталей

    для гетероядерной молекулы.

    8. Кратность химической связи равна половине разности числа электронов, расположенных на связывающих орбиталях, и числа электронов на разрыхляющих: n = ½ (Nсвяз. – Nразр).

    При описании молекулы по ММО будем придерживаться следующего плана (презентация рис. 35):

    1. Определить, какие АО перекрываются и образуют МО

    2. Построить энергетическую диаграмму МО молекулы (иона)

    3. Распределить электроны по МО в соответствии с принципом наименьшей энергии, принципом Паули и правилом Гунда

    5. Предположить магнитные свойства молекулы (иона)

    6. Сравнить энергию ионизации молекулы (иона) и исходных атомов

    7. Спектральные свойства молекулы (иона)

    Для примера разберем энергетические диаграммы и электронное строение гетероядерных игомоядерных молекул и ионов, образованных двумя атомами элементов первого и второго периодов Периодической системы .

    У элементов первого периода (презентация рис.36) валентной орбиталью является 1s- орбиталь. Эти две атомных орбитали образуют две σ-молекулярные орбитали – связывающую и разрыхляющую.

    Рассмотрим электронное строение молекулярного иона Н 2 + . Он имеет один электрон, который будет занимать более энергетически выгодную s-связывающую орбиталь. В соответствии с правилом подсчета кратности связи n= 0,5, а так как в ионе имеется один неспаренный электрон, Н 2 + будет обладать парамагнитными свойствами. Электронное строение этого иона запишется по аналогии с электронным строением атома так: σ связ 1s 1 .

    Появление второго электрона на s-связывающей орбитали приведет к энергетической диаграмме, описывающей молекулу водорода Н 2 , возрастанию кратности связи до единицы и диамагнитным свойствам. Возрастание кратности связи повлечет за собой и увеличение энергии диссоциации молекулы H 2 и более короткому межъядерному расстоянию по сравнению с аналогичной величиной у иона водорода. Электронное строение H 2 можно записать так: σ связ 1s 2 .

    Энергетические диаграммы элементов I периода (презентация рис.34)

    Двухатомная молекула He 2 существовать не будет , так как имеющиеся у двух атомов гелия четыре электрона расположатся на связывающей и разрыхляющей орбиталях, что приводит к нулевой кратности связи. Но в то же время ион He 2 + будет устойчив и кратность связи в нем равна 0,5. Так же, как и ион водорода, этот ион будет обладать парамагнитными свойствами.

    У элементов второго периода (презентация рис.37)появляются еще четыре атомных орбитали: 2s, 2p Х, 2p Y , 2p Z , которые будут принимать участие в образовании молекулярных орбиталей.

    Различие в энергиях 2s- и 2p-орбиталей велико , и они не будут взаимодействовать между собой с образованием молекулярных орбиталей. Эта разница в энергиях при переходе от первого элемента к последнему будет увеличиваться. В связи с этим обстоятельством электронное строение двухатомных гомоядерных молекул элементов второго периода будет описываться двумя энергетическими диаграммами (презентация рис.38), отличающимися порядком расположения на них σ связ 2p х иπ св 2p y,z электронов.

    При относительной энергетической близости 2s- и 2p-орбиталей, наблюдаемой в начале периода, включая атом азота, электроны, находящиеся на σ разр 2s- и σ связ 2p х -орбиталях, взаимно отталкиваются. Поэтому π связ 2p y и π связ 2p z -орбитали оказываются энергетически более выгодными, чем σ связ 2p X -орбиталь. На рис. 38 представлены обе диаграммы.

    Так как участие 1s-электронов в образовании химической связи незначительно, их можно не учитывать при электронном описании строения молекул, образованных элементами второго периода.

    Представленные на рис. 38 энергетические диаграммы, подтвержденные спектроскопическими данными, показывают следующий порядок размещения молекулярных орбиталей с увеличением энергии от Li 2 до N 2 включительно:

    а) а от O 2 до F 2:

    σ связ 1s< σ разр 1s << σ связ 2s< σ разр 2s << σ связ 2p X < π связ 2p У = π связ 2p z < π разр 2p У < π разр 2p z << σ разр 2p X .

    б) от Li 2 до N 2 включительно:

    σ связ 1s< σ разр 1s << σ связ 2s < σ разр 2s < π связ 2p У = π связ 2p z < σ связ 2p X < π разр 2p У < π разр 2p z << σ разр 2p X ;

    Рис. 38. Энергетические диаграммы уровней двухатомных молекул

    при значительном и незначительном энергетическом различии атомных 2s- и 2p-орбиталей.

    Второй период системы открывают литий и бериллий, у которых внешний энергетический уровень содержит лишь s-электроны.

    Энергетические диаграммы элементов второго периода (презентация рис.39, 41) от Li доF.

    Для этих элементов схема молекулярных орбиталей ничем не будет отличаться от энергетических диаграмм молекул и ионов водорода и гелия, с той лишь разницей, что у последних она построена из 1s-электронов, а у Li 2 и Be 2 –из 2s-электронов. 1s-электроны лития и бериллия можно рассматривать как несвязывающие, т. е. принадлежащие отдельным атомам. Здесь будут наблюдаться те же закономерности в изменении порядка связи, энергии диссоциации и магнитных свойств. Ион Li 2 + имеет один неспаренный электрон, расположенный на σ связ 2s -орбитали – ион парамагнитен . Появление второго электрона на этой орбитали приведет к увеличению энергии диссоциации молекулы Li 2 и возрастанию кратности связи с 0,5 до 1. Магнитные свойства приобретут диамагнитный характер . Третий s-электрон расположится на σ разр 2s -орбитали, что будет способствовать уменьшению кратности связи до 0,5 и, как следствие этого, понижению энергии диссоциации. Такое электронное строение имеет парамагнитный ион Be 2 + . Молекула Be 2 , так же как и He 2 , существовать не может из-за нулевого порядка связи. У этих молекул число связывающих электронов равно числу разрыхляющих!

    Дальнейшее заполнение молекулярных энергетических уровней для

    двухатомных гомоядерных молекул и некоторых ионов элементов второго

    периода показано на (презентация рис. 40,42,43). Как видно из рисунка 40, по мере заполнения связывающих орбиталей энергия диссоциации молекул увеличивается, а с появлением электронов на разрыхляющих орбиталях уменьшается. Ряд заканчивается нестабильной молекулой Ne 2 . Из рисунка также видно, что удаление электрона с разрыхляющей орбитали приводит к повышению кратности связи и, как следствие этого, увеличению энергии диссоциации и уменьшению межъядерного расстояния. Ионизация молекулы, сопровождаемая удалением связывающего электрона дает прямо противоположный эффект.

    Электронные формулы 2х атомных молекул элементов второго периода:

    Сравним энергетические диаграммы следующих двух пар молекул и

    ионов: О 2 + , О 2 , N 2 + , N 2 , приведенные на (презентация рис.40):

    Рис. 40. Энергетические диаграммы двухатомных молекул и ионов

    элементов второго периода Периодической системы.

    Энергии сконструированных молекулярных орбиталей могут быть определены по данным спектров поглощения веществ в ультрафиолетовой области. Так, среди молекулярных орбиталей молекулы кислорода, образовавшихся в результате перекрывания p -АО, две πсвяз ывающиевырожденные (с одинаковой энергией) орбитали обладают меньшей энергией, чем σ-связ ывающая , впрочем, как и π*-разр ыхляющие орбитали обладают меньшей энергией в сравнении с σ*-разр ыхляющей орбиталью

    В молекуле O 2 два электрона с параллельными спинами оказались на двух вырожденных (с одинаковой энергией) π*-разрыхляющих молекулярных орбиталях. Именно наличием неспаренных электронов и обусловлены парамагнитные свойства молекулы кислорода , которые станут заметными, если охладить кислород до жидкого состояния (презентация рис. 44). .

    Гетероядерные молекулы . При описании энергетических диаграмм МО гетероядерных молекул следующие правила (презентация рис. 45):

    1. Исходные АО дают разный вклад в Есвяз. и Еразр. МО.

    2.Число МО = числу АО; число связ. МО = число разр. МО = число АО того атома, у которого их меньше.

    3. Эффективно перекрываются АО, энергия которых отличается не более, чем на 20эВ.

    4. Эффективно перекрываются АО, симметрия которых относительно межъядерной оси одинаковая.

    5. АО, не участвующие в эффективном перекрывании, переходят в несвязывающие МО без изменения энергии.

    Из двухатомных молекул самой прочной является молекула азота, кратность связи в которой равна трем. Логично предположить, что у гетероядерных молекул и однозарядных ионов, имеющих одинаковое число электронов с N 2 – (14=7+7), – кратность связи будет такой же.

    Молекулы, имеющие одинаковое число электронов на одинаковых орбиталях, называются изоэлектронными (презентация рис. 46).

    Такими молекулами являются CO, BF, BeNe и ионы CN - , NO + , CF + , BO - (презентация рис. 47). По аналогии с молекулой азота они должны обладать высокими значениями энергий диссоциации. Такой вывод нетрудно сделать, распространяя схему МО гомоядерных молекул на гетероядерные.

    При этом надо учитывать, что s- и p-орбитали с увеличением заряда ядра понижают свою энергию, а расщепление между ними по энергии растет. Диаграмма (Шрайвер, Эткинс презентация рис. 43).

    Вследствие этого появляются существенные отличия в образовании молекулярных орбиталей у некоторых гетероядерных молекул от гомоядерных. Проиллюстрируем это утверждение на примере иона NO+ и

    молекулы CO.

    Рис. 47. Энергетические диаграммы для иона NO+ (a) и молекулы СО (б).

    Поскольку заряды ядер атомов азота(+7) и кислорода(+8) отличаются на единицу, существенного отличия в энергиях их атомных орбиталей не наблюдается и схема МО иона NO+ будет аналогична схеме МО молекулы азота N 2 (рис. 47а).

    Все р-орбитали атома кислорода (+8) по энергии расположены ниже, чем соответствующие атомные орбитали атома углерода (+6), т. к. заряд ядра кислорода на две единицы больше (Шрайвер, Эткинс презентация рис. 43). Результатом этих энергетических различий будет существенное отличие молекулярных орбиталей СО оксида углерода от молекулярных орбиталей иона NO+ (рис. 47б).

    2s-орбиталь (презентация рис. 48). кислорода располагается значительно ниже 2s-орбитали углерода, следствием чего является их слабое взаимодействие, приводящее к образованию слабосвязывающей σ св -орбитали, энергия которой практически не отличается от атомной 2s-орбитали кислорода. В то же время энергии 2p-орбиталей кислорода и 2s-орбитали углерода близки. Эта близость приводит к образованию двух σ св -связывающий и σ разр -разрыхляющей орбиталей. Если верхняя занятая σ-орбиталь в ионе NO+ обладает ярко выраженным связывающим характером, то в молекуле CO эта орбиталь является слаборазрыхляющей. Поэтому ион СО+ имеет энергию диссоциации несколько большую, чем молекула СО. Образование других перечисленных выше молекул и ионов сомнительно, т. к. в них энергетические различия еще больше, чем у СО.

    На слайдах 49, 50, 51презентации представлены молекулы LiF, HF, проанализируйте их образование.

    Метод МО ЛКАО можно использовать не только для двухатомных молекул, но и для многоатомных. Разберем в качестве примера в рамках данного метода строение молекулы NH 3 аммиака (презентация рис. 52).

    Поскольку три атома водорода имеют только три 1s -орбитали, то суммарное число образованных молекулярных орбиталей будет равно шести (три связывающих и три разрыхляющих). Два электрона атома азота окажутся на несвязывающей молекулярной орбитали (неподеленная электронная пара НЭП).

    Металлическая связь . В отличие от ионных и ковалентных соединений металлы отличаются высокой электропроводностью и теплопроводностью. Высокая электропроводность металлов указывает на то, что электроны свободно могут передвигаться во всем его объеме. Иными словами металл можно рассматривать как кристалл, в узлах решетки которого расположены ионы, связанные электронами, находящимися в общем пользовании, т. е. в металлах имеет место сильно нелокализованная химическая связь. Совокупность электронов, обеспечивающих эту связь, называют электронным газом.

    Более общий подход к представлению об ионных, ковалентных и металлических кристаллах можно получить, применяя представления метода молекулярных орбиталей к ним. Предположим, что твердое тело представляет из себя единую молекулу, образованную большим числом атомов. Внешние орбитали этих атомов при взаимодействии образуют связывающие и несвязывающие молекулярные орбитали. Энергетическая зона, образованная связывающими молекулярными орбиталями, называется валентной зоной. Зона, объединяющая несвязывающие орбитали, называется зоной проводимости . Энергетические различия электронов в пределах зоны малы, и изменение их энергии в зоне можно представить как непрерывную полосу энергии. Между зоной проводимости и валентной зоной отсутствуют какие-либо уровни энергий. Поэтому там электроны находиться не могут. Энергетическая зона, разделяющая валентную зону и зону проводимости, носит название запрещенной .

    Рис. 23. Энергетические зоны в кристалле, образованные атомными орбиталями.

    Электропроводность в твердом теле обеспечивается преодолением электронами запрещенной зоны, т. е. протекание электрического тока обеспечивается переходом электронов из валентной зоны в зону проводимости. В зависимости от ширины запрещенной зоны все твердые тела можно разделить на три класса: диэлектрики, полупроводники и проводники-металлы. Для изоляторов ширина запрещенной зоны составляет более 3 электронвольт, для полупроводников она лежит в пределах от 0,1 до 3 эВ. В металлах вследствие перекрывания валентной зоны и зоны проводимости запрещенная зона практически отсутствует

    Метод валентных связей дает теоретическое обоснование широко применяемым химиками структурным формулам и позволяет правильно определить структуру практически всех соединений s – и p – элементов. Большое достоинство метода в его наглядности. Однако представление о локализованных (двухцентровых, двухэлектронных) химических связях оказывается слишком узким для объяснения многих экспериментальных фактов. В частности, метод валентных связей несостоятелен для описания молекул с нечетным числом электронов, например, H , H , бораны, некоторые соединения с сопряженными связями, ряд ароматических соединений, карбонилы металлов, т.е. молекулы с дефицитом электронов или их избытком (H ). Обнаружились непреодолимые трудности использования метода валентных связей для объяснения валентности элементов восьмой группы с фтором и кислородом (XeF 6 , XeOF 4 , XeO 3 и др.), металлов в ”сэндвичевых” металлоорганических соединениях, например, железа в ферроцене

    Fe (C 5 H 5) 2 , где он должен был бы образовать связи с десятью атомами углерода, не имея такого количества электронов на внешней оболочке.

    На основе метода ВС трудно объяснить и то, что отрыв электронов от некоторых молекул приводит к упрочнению химической связи. Так, энергия разрыва связи в молекуле F 2 составляет 38 ккал/моль, а в молекулярном ионе F - 76 ккал/моль. Этот метод не объясняет и парамагнетизм молекулярного кислорода O 2 и B 2 .

    Более общим и универсальным оказался метод молекулярных орбиталей (МО) , при помощи которого удается объяснить факты, непонятные с позиции метода ВС . Значительный вклад в разработку метода МО внес американский ученый Р. Малликен (1927 – 1929 гг).

    Основные понятия. В своей основе метод МО распространяет квантово - механические закономерности, установленные для атома, на более сложную систему - молекулу. В основе метода молекулярных орбиталей лежит представление об ""орбитальном"" строении молекулы, т.е. предположение о том, что все электроны данной молекулы (как и в атоме) распределяются по соответствующим орбиталям. Каждая орбиталь характеризуется набором квантовых чисел, отражающих свойства электрона в данном энергетическом состоянии. Особенность метода МО заключается в том, что в молекуле имеется нескольких атомных ядер, т.е. в отличие от одноцентровых атомных орбиталей молекулярные орбитали несколькоцентровые (общие для двух и большего числа атомных ядер). По аналогии с атомными s -, p -, d -, f - орбиталями молекулярные орбитали обозначаются греческими буквами σ -, π, δ -, φ .

    Основная проблема метода МО - нахождение волновых функций, описывающих состояние электронов на молекулярных орбиталях. Согласно одному из вариантов метода молекулярных орбиталей, названным линейной комбинацией атомных орбиталей (МОЛКАО) , молекулярные орбитали образуются из атомных путем их линейной комбинации. Пусть электронные орбитали взаимодействующих атомов характеризуются волновыми функциями Ψ 1 , Ψ 2 , Ψ 3 и т.д. Тогда предполагается, что волновая функция Ψ мол , отвечающая молекулярной орбитали, может быть представлена в виде суммы:

    Ψ мол. = С 1 Ψ 1 + С 2 Ψ 2 + С 3 Ψ 3 + …. .,

    где С 1 , С 2 , С 3 ... некоторые численные коэффициенты. Это уравнение равносильно предположению, что амплитуда молекулярной электронной волны (т.е. молекулярная волновая функция) образуется сложением амплитуд взаимодействующих атомных электронных волн (т. е. сложением атомных волновых функций). При этом, однако, под влиянием силовых полей ядер и электронов соседних атомов волновая функция каждого электрона изменяется по сравнению с исходной волновой функцией этого электрона в изолированном атоме. В методе МОЛКАО эти изменения учитываются введением коэффициентов С 1 , С 2 , С 3 и т.д.

    При построении молекулярных орбиталей по методу МОЛКАО должны соблюдаться определенные условия:

    1. Комбинируемые атомные орбитали должны быть близкими по энергии, иначе электрону будет энергетически невыгодно находиться на подуровне с более высокой энергией. (1 s и 5 p не взаимодействуют).

    2. Необходимо максимальное перекрывание атомных орбиталей, образующих молекулярную орбиталь.

    3. Атомные орбитали, образующие молекулярные орбитали, должны обладать одинаковыми свойствами симметрии относительно межъядерной оси молекулы. (p x - электронное облако может комбинироваться только с p x облаком, но не p y и p z ).

    Следует также учитывать, что совокупность молекулярных орбиталей молекулы, занятых электронами, представляет ее электронную конфигурацию. Она строится так же как и для атома, на основе принципа наименьшей энергии и принципа Паули.

    Для описания электронной конфигурации основного состояния молекулы с 2n или (2n - 1) электронами требуется n молекулярных орбиталей.

    Связывающие и разрыхляющие орбитали. Рассмотрим, какой вид будет иметь молекулярная волновая функция Ψ м , образованная в результате взаимодействия волновых функций (Ψ 1 и Ψ 2 ) 1 s орбиталей двух одинаковых атомов. Для этого найдем сумму С 1 Ψ 1 + С 2 Ψ 2 . Поскольку в данном случае атомы одинаковые С 1 = С 2 ; они не будут влиять и на характер волновых функций, поэтому ограничимся нахождением суммы Ψ 1 + Ψ 2 .

    Для этого расположим ядра взаимодействующих атомов на том расстоянии друг от друга (r) , на котором они находятся в молекуле. Вид Ψ функций 1 s орбиталей будет следующим:


    Ψ мол

    Рис. 22. Схема образования связывающей МО

    из атомных 1 s - орбиталей

    Чтобы найти молекулярную волновую функцию Ψ , сложим величины Ψ 1 и Ψ 2 . В результате получим следующий вид кривой (рис. 22)

    Как видно, в пространстве между ядрами значения молекулярной волновой функции Ψ мол. больше, чем значения исходных атомных волновых функций. Но Ψ мол. характеризует вероятность нахождения электрона в соответствующей области пространства, т.е. плотность электронного облака.

    Возрастание Ψ мол. – функции в сравнении с Ψ 1 и Ψ 2 означает, что при образовании молекулярной орбитали плотность электронного облака в межъядерном пространстве увеличивается, в результате возникают силы притяжения положительно заряженных ядер к этой области – образуется химическая связь. Поэтому молекулярная орбиталь рассматриваемого типа называется связывающей.

    В данном случае область повышенной электронной плотности находится вблизи оси связи, так что образовавшаяся МО относится к σ – типу. В соответствии с этим, связывающая МО , полученная в результате взаимодействия двух атомных 1s – орбиталей обозначается σ св. 1s . Электроны, находящиеся на связывающей МО , называются связывающими электронами.

    При взаимодействии двух атомов знаки волновых функций их 1s – орбиталей могут оказаться различными. Такой случай графически можно представить следующим образом:


    Ψ мол

    Рис. 23. Схема образования разрыхляющей МО

    из атомных 1 S – орбиталей

    Молекулярная орбиталь (рис. 23), образующаяся при таком взаимодействии, характеризуется уменьшением абсолютной величины волновой функции в межъядерном пространстве по сравнению с ее значением в исходных атомах: на оси связи

    появляется даже точка, в которой значение волновой функции, а, следовательно, и ее квадрата, обращается в нуль. Это означает, что в рассматриваемом случае уменьшится и плотность электронного облака в пространстве между атомами. В результате притяжения каждого атомного ядра в направлении к межъядерной области пространства окажется более слабым, чем в противоположном направлении, т.е. возникнут силы, приводящие к взаимному отталкиванию ядер. Здесь, следовательно, химическая связь не возникает; образовавшаяся в этом случае МО называется разрыхляющей (σ разр. 1s ), а находящиеся на ней электроны – разрыхляющими электронами.


    Молекулярные орбитали, полученные при сложении и вычитании 1s – атомных орбиталей имеют следующие формы (рис. 24). Взаимодействие, приводящее к образованию связывающей орбитали, сопровождается выделением энергии, поэтому электрон, находящийся на связывающей орбитали, обладает меньшей энергией, чем в исходном атоме.

    Рис. 24. Схема образования связывающей и разрыхляющей

    молекулярных σ - орбиталей

    Образование разрыхляющей орбитали требует затраты энергии. Следовательно, на разрыхляющей орбитали электрон обладает более высокой энергией, чем в исходном атоме.


    Двухатомные гомоядерные молекулы элементов первого периода. Образование молекулы водорода H 2 по методу МО представляется следующим образом (рис. 25):

    Рис. 25. Энергетическая диаграмма образования

    молекулярных орбиталей H 2

    Следовательно, вместо двух энергетически равноценных 1 s – орбиталей (исходные атомы водорода) при образовании молекулы H 2 возникают две энергетически неравноценные молекулярные орбитали – связывающая и разрыхляющая.

    В этом случае 2 элемента занимают молекулярную орбиталь с более низкой энергией, т.е. σ св 1 s орбиталь.

    Реакция образования молекулы H 2 в терминах МО может быть записана:

    2 H = H 2 [ (σ св 1 s) 2 ] или

    H + H = H 2 [(σ св 1 s) 2 ]

    В молекуле H 2 два электрона. Согласно принципу наименьшей энергии и принципу Паули эти два электрона с противоположными спинами также заселяют σ св орбиталь.

    Приведенная энергетическая диаграмма молекулярных орбиталей справедлива для двухъядерных образований (элементами первого периода): H 2 + , He 2 + и He 2

    В молекулярном дигелии – ионе He 2 + три электрона, два из которых заселяют связывающую, третий – разрыхляющую орбиталь He 2 + [(σ св 1 s) 2 (σ разр 1 s)] (рис. 26):


    Ион H 2 + состоит из двух протонов и одного электрона. Естественно, что единственный электрон этого иона должен занимать энергетически наиболее выгодную орбиталь, т.е. σ св 1s . Таким образом, электронная формула иона H 2 + H 2 + [(σ св 1s) " ] (рис. 27):

    Рис. 27. Энергетическая диаграмма образования

    молекулярных орбиталей H

    В системе из двух атомов гелия He 2 четыре электрона; два на связывающей и два на разрыхляющей орбитали.

    Энергия, длина и порядок связи. По характеру распределения электронов по молекулярным орбиталям можно оценить энергию и порядок связи. Как уже было показано, нахождение электрона на связывающей орбитали означает, что электронная плотность концентрируется между ядрами, что обуславливает сокращение межъядерного расстояния и упрочения молекулы. Наоборот электрон на разрыхляющей орбитали означает, что электронная плотность концентрируется за ядрами. В этом случае, следовательно, энергия связывания снижается, а межъядерное расстояние увеличивается, как это показано ниже.

    В ряду H 2 + - H 2 - He 2 + по мере заполнения связывающей орбитали, энергия диссоциации молекул возрастает, с появлением же электрона на разрыхляющей МО , наоборот, уменьшается, а затем увеличивается.

    Молекула гелия существовать не может в невозбужденном состоянии, так как число связывающих и разрыхляющих электронов у нее одинаково.

    Согласно методу МО порядок связи (кратность) (n) оценивается полуразностью числа связывающих и разрыхляющих электронов:

    a – число электронов на связывающих орбиталях;

    b - число электронов на разрыхляющих орбиталях.

    или , где А – число атомов в молекуле.

    Двухатомные гомоядерные молекулы элементов второго периода. У элементов 2 – го периода кроме 1 s – орбиталей в образовании МО принимают участие 2s -; 2p x - , 2p y и 2p z – орбитали.

    Комбинация из 2s – орбиталей, как и в случае атомных 1s – орбиталей, соответствует образованию двух молекулярных σ – орбиталей: σ св 2s и σ разр 2s .

    Иная картина наблюдается при комбинации орбиталей p – типа. При комбинации атомных 2p x – орбиталей, которые вытянуты вдоль оси х , возникают молекулярные σ – орбитали: σ св 2p x и σ разр 2p x .

    При комбинации 2p y и 2p z атомных орбиталей образуются π св 2p y и π св 2p z , π разр 2p y и π разр 2p z .

    Поскольку энергия 2p y и 2p z - орбиталей одинакова и перекрываются они одинаковым способом, возникающие π св 2p y и π св 2p z – орбитали имеют одинаковую энергию и форму; то же самое относится к π разр 2p y и π разр 2p z – орбиталям. Таким образом, молекулярные π – орбитали составляют π св и π разр дважды вырожденные энергетические уровни.

    Согласно спектроскопическим данным МО двухатомных молекул элементов конца периода по уровню энергии располагаются в следующем порядке:

    σ св 1s < σ разр 1s < σ св 2s < σ разр 2s < σ св 2p x < π св 2p y = π св 2p z < π разр 2p y = π разр 2p z < σ разр 2p x

    При энергетической близости 2s и 2p – орбиталей электроны на σ 2s и σ 2p – орбиталях взаимно отталкиваются и потому π св 2p y и π св 2p z - орбитали оказываются энергетически более выгодными, чем σ св 2p x орбиталь. В этом случае порядок заполнения молекулярных орбиталей несколько изменяется и соответствует следующей последовательности:

    σ св 1s < σ разр 1s < σ св 2s < σ разр 2s < π св 2p y = π св 2p z < σ св 2p x < π разр 2p y = π разр 2p z < σ разр 2p x

    Энергетическое различие 2s и 2p – орбиталей в периоде увеличивается от I группы к VIII . Поэтому приведенная последовательность молекулярных орбиталей характерна для двухатомных молекул элементов начала II – го периода вплоть до N 2 . Так, электронная конфигурация N 2 . в основном (невозбужденном) состоянии имеет вид:

    2N = N 2 [(σ св 1s) 2 (σ разр 1s) 2 (σ св 2s) 2 (σ разр 2s) 2 * (π св 2p y) 2 (π св 2p z) 2 (σ св. 2p x) 2 ]

    или графически (рис. 28):

    АО МО АО

    N 1s 2 2s 2 2p 3 N 2 1s 2 2s 2 2p 3


    Рис. 28. Энергетическая диаграмма образования

    молекулярных орбиталей N 2

    Характер распределения электронов по молекулярным орбиталям позволяет объяснить также магнитные свойства молекул. По магнитным свойствам различают парамагнитные и диамагнитные вещества. Парамагнитными являются вещества, у которых имеются непарные электроны, у диамагнитных веществ – все электроны парные.

    В таблице приведены сведения об энергии, длине и порядке связи гомоядерных молекул элементов начала и конца 2 – ого периода:

    В молекуле кислорода имеется два непарных электрона, поэтому она парамагнитна; молекула фтора непарных электронов не имеет, следовательно, она диамагнитна. Парамагнитны также молекула B 2 и молекулярные ионы H 2 + и He 2 + , а молекулы С 2 , N 2 и H 2 – диамагнитны.

    Двухатомные гетероядерные молекулы. Гетероядерные (разноэлементные) двухатомные молекулы описывают методом МОЛКАО , так же как гомоядерные двухатомные молекулы. Однако поскольку речь идет о разных атомах, то энергия атомных орбиталей и их относительный вклад в молекулярные орбитали тоже различны:

    Ψ + = С 1 Ψ А + С 2 Ψ B

    Ψ - = С 3 Ψ А + С 4 Ψ B




    Рис. 29. Энергетическая диаграмма молекулярных орбиталей гетероядерной молекулы АВ

    В связывающую орбиталь больший вклад вносит атомная орбиталь более электроотрицательного атома, а в разрыхляющую – орбиталь менее электроотрицательного элемента (рис. 29). Допустим, атом B электроотрицательнее атома A . Тогда С 2 > С 1 , а С 3 > С 4 .

    Различие в энергии исходных атомных орбиталей определяет полярность связи. Величина в является мерой ионности,

    а величина a – ковалентности связи.

    Диаграмма энергетических уровней гетероядерных двухатомных молекул 2 – го периода аналогична диаграмме гомоядерных молекул 2 – го периода. Например, рассмотрим рас-пределение электронов по орбиталям молекулы CO и ионов CN - и NO + .

    Молекула CO и ионы CN - , NO + изоэлектронны молекуле N 2 (содержит по 10 валентных электронов), что соответствует следующей электронной конфигурации в невозбужденном состоянии:



    (σs св.) 2 (σs разр.) 2 (πу св.) 2 (πz св.) 2 (σх св.) 2

    Энергетическая диаграмма уровней молекулы BeH 2 имеет вид: Четыре валентных электрона невозбужденной молекулы BeH 2 располагаются на σ и σ - орбиталях, что описывается формулой (σ ) 2 (σ ) 2 .

    Ионная связь

    Химическая связь, возникающая за счет перехода электронов от атома к атому, называется ионной, или электрова-

    лентной. Электровалентность определяется числом электронов, теряемых или приобретаемых каждым атомам. Причиной возникновения ионной связи является большая разность ЭО взаимодействующих атомов 2,0 и более. Принципиального различия в механизме возникновения ковалентной и ионной связей нет. Эти виды связи отличаются лишь степенью поляризации электронного облака связи, а, следовательно, длинами диполей и величинами дипольных моментов. Чем меньше разность электроотрицательностей атомов, тем более проявляется ковалентная связь и менее - ионная. Даже в таком ’’идеальном” ионном соединении, как фторид франция, ионная связь составляет около 93- 94 % .

    Если рассмотреть соединения элементов какого – либо периода с одним и тем же элементом, то по мере передвижения от начала к концу периода преимущественно ионный характер связи меняется на ковалентный. Например, у фторидов элементов 2 – ого периода в ряду LiF, BeF 2 , BF 3 , CF 4 , NF 3 , OF 2 , F 2 ионная связь характерная для фторида лития, постепенно ослабевает и переходит в типично ковалентную связь в молекуле фтора.

    Для однотипных молекул, например HF, HCl, HBr, HS (или H 2 O, H 2 S, H 2 Se ), дипольный момент тем больше, чем больше ЭО элементов (ЭО F > ЭО Cl ; ЭО О > ЭO S , Se ).

    Образующиеся ионы можно представить в виде заряженных шаров, силовые поля которых равномерно распределяются во всех направлениях пространства (рис. 30). Каждый ион может притягивать к себе ионы противоположного знака по любому направлению. Иначе говоря, ионная связь в отличие от ковалентной характеризуется ненаправленностью .

    Рис. 30. Распределение электрических силовых

    полей двух разноименных ионов

    В отличие от ковалентной связи ионная связь характеризуется еще и ненасыщенностью . Объясняется это тем, что образующиеся ионы способны притягивать большое количество ионов противоположного знака. Число притягивающихся ионов определяется относительными размерами взаимодействующих ионов. Вследствие ненаправленности и ненасыщаемости ионной связи, энергетически наиболее выгодно, когда каждый ион окружен максимальным числом ионов противоположного знака. Таким образом, для ионных соединений понятие простых двухионных молекул типа NaCl, CsCl теряет смысл. Ионные соединения в обычных условиях представляют собой кристаллические вещества. Весь кристалл можно рассматривать как гигантскую молекулу, состоящую из ионов Na , Cl и Cs Cl

    Лишь в газообразном состоянии ионные соединения существуют в виде неассоциированных молекул типа NaCl и CsCl .

    Ионная связь, как было показано выше, не является чисто ионной даже в типичных молекулах (CsF, F 2 F ). Неполное разделение зарядов в ионных соединениях объясняется взаимной поляризацией ионов, т.е. влиянием их друг на друга. Поляризуемость – способность к деформации электронных оболочек в электрическом поле.

    Это приводит к деформации электронных оболочек ионов. Наибольшее смещение испытывают при поляризации электроны внешнего слоя, поэтому в первом приближении можно считать, что деформации подвергается только внешняя электронная оболочка. Поляризуемость различных ионов неодинакова

    Li + < Na + < K + < Rb + < Cs +

    Увеличение R

    Точно также поляризуемость галогенов изменяется в следующей последовательности:

    F - < Cl - < Br - < I -


    Увеличение R иона, увеличение поляризуемости.

    Чем меньше заряд иона, тем меньше его поляризуемость. Поляризующая способность ионов, т.е. их способность оказывать деформирующее воздействие на другие ионы зависит от заряда и размера ионов. Чем больше заряд иона и меньше его радиус, тем сильнее создаваемое им электрическое поле, следовательно, тем больше его поляризующая способность. Таким образом, анионы характеризуются (в сравнении с катионами) сильной поляризуемостью и слабой поляризующей способностью.

    Рис. 31. Смещение электронного облака аниона

    в результате поляризации

    Под действием электрических полей каждого иона внешняя электронная оболочка смещается в сторону противоположно заряженного иона. Действие электрических полей смещает и ядра атомов в противоположных направлениях. Под действием электрического поля катиона внешнее электронное облако аниона смещается. Происходит как бы обратный перенос части электронного заряда от аниона к катиону (рис. 31).

    Таким образом, в результате поляризации электронные облака катиона и аниона оказываются не полностью разделенными и частично перекрываются, связь из чисто ионной превращается в сильнополярную ковалентную. Следовательно, ионная связь – предельный случай полярной ковалентной связи. Поляризация ионов оказывает заметное влияние на свойства образуемых ими соединений. Поскольку с усилением поляризации возрастает степень ковалентности связи, то это сказывается на диссоциации солей в водных растворах. Так, хлорид BaCl 2 принадлежит к сильным электролитам и в водных растворах практически полностью распадается на ионы, тогда как хлорид ртути HgCl 2 почти не диссоциирует на ионы. Это объясняется сильным поляризующим действием иона Hg 2+ радиус которого (1,1 Аº ) заметно меньше радиуса иона Ba 2+ (1,34 Аº )

    Особенно высоким поляризующим действием обладает ион водорода, который может сближаться с анионом до близкого расстояния, внедряясь в его электронную оболочку и вызывая сильную ее деформацию. Так, радиус Cl - равен 1,81 Аº , а расстояние между ядрами атомов хлора и водорода в HCl – 1,27 Аº .

    Водородная связь

    Общие понятия. Водородная связь – разновидность донорно – акцепторной связи, осуществляющаяся между молекулами различных веществ, в состав которых входит водород. Если молекулу такого вещества обозначить НХ , то взаимодействие за счет водородной связи можно выразить так

    Н – Х….. Н – Х….. Н – Х

    В качестве х можно взять атомы F, O, N, Cl, S и др. Точечным пунктиром обозначена водородная связь.

    В молекулах НХ атом H ковалентно соединен с электроотрицательным элементом, общая электронная пара значительно смещена к электроотрицательному элементу. Водородный атом оказывается протонированным (H + ) и он имеет свободную орбиталь.

    Анион электроотрицательного элемента другой молекулы НХ имеет неподеленную пару электронов, за счет которых происходит взаимодействие. Если водородная связь образуется между разными молекулами, то она называется межмолекулярной, если связь образуется между двумя группами одной и той же молекулы, то она называется внутримолекулярной. Образование водородной связи наблюдается в растворах НF, H 2 O (жидк.), NH 3 (жидк.), спиртах, органических кислотах и др.

    Энергия и длина водородной связи. Водородная связь отличается от ковалентной меньшей прочностью. Энергия водородной связи невелика и достигает 20 – 42 кДж/моль. Она зависит от электроотрицательности (ЭО) и размеров атомов Х : энергия возрастает с увеличением ЭО и уменьшением их размеров. Длина ковалентной связи заметно меньше длины водородной связи (l св. H) , например, l св. (F - H) = 0, 092 нм , а l св. H (F … H) = 0, 14 нм . У воды l св. (O - H) = 0, 096 нм , а l св. H (O … H) = 0, 177 нм.


    или более сложные конфигурации, например у льда, у которого молекулы воды образуют по четыре водородные связи

    Соответственно в жидком состоянии молекулы, вступающие в водородные связи, ассоциированы, а в твердом состоянии образуют сложные кристаллические структуры.

    При образовании водородных связей существенно изменяются свойства веществ: повышаются температура кипения и плавления, вязкость, теплоты плавления и парообразования. например, вода, фтороводород и аммиак имеют аномально высокие температуры кипения и плавления.

    Вещества в парообразном состоянии проявляют водородную связь в незначительной степени, т.к. с повышением температуры энергия водородной связи уменьшается.

    Похожие статьи