• Nacl механизм образования связи. Типы химических связей: ионная, ковалентная, металлическая. Что такое химические связи

    02.03.2022

    Лишь немногие химические элементы могут существовать в индивидуальном виде в виде газов. Эти элементы называются инертными газами. Остальные химические элементы будут взаимодействовать друг с другом или с другими атомами, образуя соединения. Причиной образования этих химических соединений является химическая связь. Химическая связь обусловлена электростатическим взаимодействием заряженных частей атома: ядра и электронной оболочки. Доказано, что в образовании химической связи принимают участие электроны внешней электронной оболочки. Такие электроны называются валентными.

    - Способность атома к образованию химической связи называется валентностью .

    Электроны в атомах располагаются на энергетических уровнях. Полностью заполненным энергетическим уровнем обладают электроны VIII-А группы - благородные или инертные газы. Учитывая химическую пассивность инертных газов и строение атомов соответствующих элементов, приходим к такому выводу: внешняя 8-электронаая оболочка является для атома выгодной и устойчивой. Её часто называют электронным октетом. Поскольку электронная конфигурация благородного газа очень устойчива, (ns2np6) то достичь её стремятся атомы других элементов. Сделать это они могут, отдав электроны, приняв или обобществив свои электроны с электронами других атомов.

    Способы образования химической связи различны, поэтому и выделяют несколько типов химической связи:

    Ионная связь.

    Каждый химический элемент обладает своей способностью притягивать к себе внешние, чужие электроны.

    - Способность атома притягивать к себе электроны называется электроотрицательностью.

    Рис. 3. Ионные соединения

    Рис. 4. Кристаллическая решетка фторида кальция

    Вещества, образованные из ионов, называются ионными соединениями. Рис.3. Соединения, образованные ионной связью при обычных условиях твёрдые вещества с высокой температурой плавления и кипения. Это хрупкие вещества. Они образуют ионную кристалличекую решетку. В узлах кристаллической решетки находятся ионы. На рисунках показаны кристалличекие решетки хлорида натрия и фторида кальция. Рис. 4,5.

    Рис. 5. Кристаллическая решетка хлорида натрия

    Таким образом, можно сделать вывод, что соединения двух элементов, расположенных в противоположных концах одного (или разных) периодов, имеют преимущественно ионный характер связи, но по мере сближения элементов в пределах периода ионный характер их соединений уменьшается. В большинстве случаев нельзя сказать, что соединение является полностью (или чисто) ионным либо полностью (или чисто) ковалентным. Однако можно утверждать, что некоторые соединения являются преимущественно ионными, а другие соединения преимущественно ковалентными.

    Хорошими примерами ионных соединений являются хлориды и оксиды. Хлориды и оксиды элементов, расположенных в левой части периодической таблицы, как правило, имеют преимущественно ионный характер.

    Источники

    http://www.youtube.com/watch?t=10&v=LtAgb6LDUeQ

    источник презентации - http://ppt4web.ru/khimija/ionnaja-khimicheskaja-svjaz.html

    Конспект http://interneturok.ru/ru/school/chemistry/9-klass

    Свойства вещества определяются его химическим составом, порядком соединения в молекулу атомов и их взаимным влиянием. Теория строения атомов объясняет механизм образования молекул и природу химической связи.

    Важнейшими видами химической связи являются ионная, ковалентная, координационная, водородная и металлическая.

    Ионная связь.

    Для объяснения химической связи между атомами в молекулах солей, оксидов и щелочей наиболее пригодна теория, в основу которой положено представление об ионной связи.

    Согласно теории ионной связи, самой устойчивой электронной конфигурацией атома является такая, при которой во внешнем электронном слое находится восемь или два электрона (подобно благородным газам). Довольно устойчивы также атомы, внешнего слой который содержит 18 электронов.

    Во время химических реакций атомы стремятся приобрести наиболее устойчивую электронную конфигурацию. Это достигается в результате присоединения электронов атомов других элементов или отдачи электронов из внешнего слоя другим атомам. Атомы, отдавшие часть электронов, приобретают положительный заряд и становятся положительно заряженными ионами. Атомы, присоединившие электроны, превращаются в отрицательно заряженные ионы. Разноимённо заряженные ионы удерживаются друг около друга силами электростатического притяжения.

    В качестве примера соединения с ионной связью рассмотрим хлорид натрия. Образование этого соединения схематически можно представить следующим образом. Атом натрия, имея электронную конфигурацию 1s 2 2s 2 2р 6 Зs 1 , легко отдает 3s-электрон, так как имеет низкую (493 кДж/моль) энергию ионизации. При этом атом натрия приобретает устойчивую электронную конфигурацию из восьми электронов 2s 2 2р 6 , характерную для благородных газов:

    Nа = Nа + + е - .

    Электронной конфигурации атома хлора 1s 2 2s 2 2р 6 Зs 2 Зр 5 до устойчивого состояния не хватает одного электрона. Вследствие большого сродства к электрону (365 кДж/моль) атом хлора легко присоединяет один электрон. Во внешнем слое при этом возникает устойчивая электронная конфигурация Зs 2 Зр 6:

    Сl +е - = Сl - .

    Разноимённо заряженные ионы натрия и хлора, возникающие в результате перехода электрона от атома натрия к атому хлора, взаимно притягиваются и образуют хлорид натрия - соединение ионного типа:

    Nа + + С1 - = Nа + Cl - .

    Молекулы, образованные из противоположно заряженных ионов называют ионными молекулами, а химическую связь в таких молекулах - ионной связью.

    Рис. 1. Координация ионов в кристалле хлорида натрия.
    Ионная связь не имеет определенной пространственной направленности, так как электрическое поле иона обладает сферической симметрией и одинаково убывает с расстоянием в любом направлении. Поэтому взаимодействие ионов не зависит от направления. Создаваемое ионами в окружающем пространстве электрическое поле тем сильнее, чем выше заряд иона и меньше его радиус.

    Вследствие сферической симметрии электрического поля иона два разноименных иона, притянувшись друг к другу, сохраняют способность электростатически взаимодействовать с другими ионами. Именно поэтому данный ион может координировать вокруг себя еще некоторое число ионов противоположного знака. Указанные свойства ионной связи обусловливают способность ионных молекул соединяться друг с другом. В газообразном состоянии ионные соединения находятся в виде отдельных неассоциированных молекул, так как при высоких температурах кинетическая энергия молекул превышает энергию их взаимного притяжения. Ионные молекулы существуют в тех находящихся в газообразном состоянии веществах, которые при охлаждении образуют геометрически правильные структуры, составляющие основу кристалла. Так, кристалл хлорида натрия представляет собой сочетание огромного множества ионов Nа + и С1 - , определенным образом ориентированных друг относительно друга.

    Из кристалла невозможно выделить определённую молекулу. Поэтому применение к подобным соединениям понятия молекула является условным и им пользуются, чтобы показать состав и количественное соотношение ионов в соединении. Из рис. 1 видно, что каждый ион Nа + окружен шестью ионами С1 - , а каждый ион Сl - , в свою очередь, - шестью ионами Na + . Число атомов или ионов, окружающих атом или ион в кристалле, называют координационным числом. В кристалле хлорида натрия координационное число для ионов натрия и хлора равно шести.

    В основе представлений об ионной связи лежит понятие об электростатическом взаимодействии разноимённо заряженных ионов.

    Способность атома терять электроны, превращаясь в положительно заряженные ионы, определяется энергией ионизация элемента (табл. 6). Из табл. 6 видно, что отрыв электрона от атома облегчается в главных подгруппах сверху вниз. При переходе к уровню с меньшим значением главного квантового числа энергия ионизации резко возрастает. Так, энергия отрыва второго электрона от атома лития в 14 раз больше энергии отрыва первого электрона. Этим и объясняется участие в образовании соединений лишь одного электрона атома лития или другого щелочного металла и не более двух электронов атома бериллия.

    Т а б л и ц а 6. Энергия ионизации атомов элементов главных подгрупп I и II групп периодической системы, кДж/моль.


    Элемент



    Элемент

    Энергия, необходимая для отрыва электрона

    первого

    второго

    первого

    второго

    Li

    518

    7285

    Be

    899

    1756



    493

    4556

    Mg

    735

    1446

    K

    418

    3063

    Ca

    586

    1145

    Rb

    401

    2650

    Sr

    547

    1061

    Cs

    376

    2290

    Ba

    501

    836

    Отрицательно заряженные ионы образуются в результате присоединения электрона к атому неметалла. Мерой способности к такому присоединению является сродство к электрону, которое характеризуется количеством энергии, выделяющейся при образовании отрицательно заряженного иона. Ниже приведены величины сродства к электрону у галогенов:

    В ряду галогенов от фтора к иоду сродство к электрону снижается, однако у хлора оно несколько выше, чем у фтора. Это объясняется появлением у элементов III периода вакантных орбиталей, которых нет у фтора, относящегося ко II периоду.



    Рис. 2. Схема деформа­ции электронных обо­лочек в электрическом поле.
    Вещества с ионной связью в молекуле характеризуются высокими температурами плавления и кипения, в расплавленном состоянии и в растворах они диссоциируют на ионы, вследствие чего проводят электрический ток.

    Помимо величины заряда и радиуса важной характеристикой иона являются его поляризационные свойства. Рассмотрим этот вопрос несколько подробнее. У неполярных частиц (атомов, ионов, молекул) центры тяжести положительных и отрицательных зарядов совпадают. В электрическом поле происходит смещение электронных оболочек в направлении положительно заряженной пластины, а ядер  в направлении отрицательно заряженной пластины (рис. 2). Вследствие деформации частицы в ней возникает диполь, она становится полярной.

    Источником электрического поля в соединениях с ионным типом связи являются сами ионы. Поэтому, говоря о поляризационных свойствах иона, необходимо различать поляризующее действие данного иона и способность его самого поляризоваться в электрическом поле.

    Поляризующее действие иона будет тем бóльшим, чем больше его силовое поле, т. е. чем больше заряд и меньше радиус иона. Поэтому в пределах подгрупп в периодической системе элементов поляризующее действие ионов понижается сверху вниз, так как в подгруппах при постоянной величине заряда иона сверху вниз увеличивается его радиус. Поэтому поляризующее действие ионов щелочных металлов, например, растет от цезия к литию, а в ряду галогенид-ионов  от I к F. В периодах поляризующее действие ионов растет слева направо вместе с увеличением заряда иона и уменьшением его радиуса.

    Поляризуемость иона, способность его к деформации растут с уменьшением силового поля, т. е. с уменьшением величины заряда и увеличением радиуса. Поляризуемость анионов обычно выше, чем катионов, и в ряду галогенидов растет от F к I.

    На поляризационные свойства катионов оказывает влияние характер их внешней электронной оболочки. Поляризационные свойства катионов как в активном, так и в пассивном смысле при одинаковом заряде и близком радиусе растут при переходе от катионов с заполненной оболочкой к катионам с незаконченной внешней оболочкой и далее к катионам с восемнадцатиэлектронной оболочкой. Например, в ряду катионов Mg­­­ 2+ , Ni 2+ , Zn 2+ поляризационные свойства усиливаются. Эта закономерность согласуется с изменением в приведённом в ряду радиуса иона и строения его электронной оболочки:

    Для анионов поляризационные свойства ухудшаются в такой последовательности:

    I - , Br - , Cl - , CN - , OH - , NO 3 - , F - , ClO 4 -

    Результатом поляризационного взаимодействия ионов является деформация их электронных оболочек и, как следствие этого, сокращение межионных расстояний и неполное разделение отрицательного и положительного зарядов между ионами. Например, в кристалле хлорида натрия величина заряда на ионе натрия составляет +0,9, а на ионе хлора –0,9 вместо ожидаемой единицы. В молекуле KCl, находящейся в парообразном состоянии, величина зарядов на ионах калия и хлора составляет 0,83 единицы заряда, а в молекуле хлороводорода  лишь 0,17 единицы заряда.

    Поляризация ионов оказывает заметное влияние на свойствах соединений о ионной связью, понижая их температуры плавления и кипения, уменьшая электролитическую диссоциацию в растворах и расплавах и др.

    Ионные соединения образуются при взаимодействии элементов, значительно различающихся по химическим свойствам. Чем больше удалены друг от друга элементы в периодической системе, тем в большей степени проявляется в их соединениях ионная связь. Напротив, в молекулах, образованных одинаковыми атомами или атомами элементов, близких по химическим свойствам, возникают другие типы связи. Поэтому теория ионной связи имеет ограниченное применение.

    Ковалентная связь.

    В основе теории ковалентной связи, как и теории ионной связи, лежит представление об особой устойчивости атома, имеющего на внешнем электронном слое оболочку из восьми электронов. Отличие ковалентной связи от ионной состоит в том, что при её возникновении атомы приобретают устойчивую конфигурацию не путем отдачи или присоединения электронов, а посредством образования одной или нескольких общих электронных пар. В создании электронной пары принимают участие оба атома, отдавая на её образование по одному электрону. Эти электроны принадлежат наружным электронным слоям обоих атомов, дополняя число их электронов до восьми.

    Если электроны в наружном электронном слое атома обозначить точками вокруг символа элемента, то образование ковалентной связи в молекулах фтора и азота можно представить следующей схемой:

    У атома фтора на внешнем слое находится семь электронов. Каждый из атомов фтора отдает по одному электрону на образование общей электронной пары, вследствие чего оба атома в молекуле фтора приобретают электронную конфигурацию ближайшего благородного газа - неона. Атомы азота, имеющие на внешнем слое по пять электронов, образуют три общие электронные пары. И в этом случае атомы в молекуле N 2 приобретают устойчивую восьмиэлектронную оболочку.

    Примерами более сложных соединений с ковалентной связью между атомами могут служить вода и аммиак:

    В молекуле воды каждый из атомов водорода связан с атомом кислорода парой общих электронов. При этом у кислорода возникает во внешнем слое восьмиэлектронная конфигурация, а у обоих атомов водорода появляется устойчивый двухэлектронный слой. Подобное электронное строение имеют атомы водорода в аммиаке, а связанный с ними атом азота содержит во внешнем слое восемь электронов. В молекулах фтора, азота и некоторых других молекулах, образованных одноименными или близкими по химическим свойствам атомами, возникает неполярная ковалентная связь, так как общая электронная пара расположена симметрично по отношению к ядрам обоих атомов и притягивается к ним с одинаковой силой.

    В молекулах более сложных соединений, образованных элементами с различными химическими свойствами (NH 3 , H 2 S, H 2 O, HCl, HBr и др.), общая электронная пара смещена в большей или меньшей мере к одному из атомов.

    Образование общей электронной пары.

    Согласно современной теории химической связи, основанной на квантовомеханических представлениях, одним из возможных путей химического взаимодействия двух атомов является образование общей электронной пары за счет имеющих антипараллельные спины неспаренных электронов этих атомов. Атомы с неспаренными электронами, имеющими параллельные спины, отталкиваются, и химическая связь между ними не возникает. Устойчивая молекула образуется лишь в том случае, если её потенциальная энергия меньше суммарной потенциальной энергии образующих её атомов. Чем больше различаются эти энергии, тем прочнее молекула.


    Рис. 3. Энергия системы, состоящей из двух атомов водорода с антипарал­лельными (а) и параллельными (б) спинами.

    При сближении двух атомов, имеющих во внешних электронных оболочках неспаренные электроны с антипараллельными спинами, между ними начинает действовать взаимное притяжение. В результате эти атомы сближаются еще больше, происходит замыкание полей и образование электронных пар. Однако расчет показал, что само по себе замыкание магнитных полей электронов со спинами противоположных направлений дает лишь очень небольшую часть той общей энергии, которая выделяется при образовании прочной валентной связи между атомами. Наличие неспаренных электронов следует рассматривать лишь как необходимое условие образования химической связи, являющейся результатом глубокого взаимодействия электронной пары с ядрами обоих атомов. где основное значение имеют электрические силы.

    Квантовомеханический расчет показывает, что пребывание электронной пары в ионе двух ядер энергетически выгоднее, чем нахождение каждого неспаренного электрона в поле своего ядра. Энергия взаимодействия электронной пары с ядрами обоих атомов зависит от расстояния между реагирующими атомами. Так, на больших расстояниях эта энергия практически равна нулю. По мере сближения атомов увеличивается их взаимное притяжение, обусловленное электростатическим притяжением электронной пары обоими ядрами. Дальнейшее сближение атомов приводит к резкому преобладанию сил отталкивания. Поэтому химическая связь между двумя атомами характеризуется строго определенным расстоянием между ядрами, при котором притяжение между атомами максимально. Это расстояние называется длиной связи.

    Квантовомеханические расчеты молекулы водорода показали, что при сближении двух атомов водорода с антипараллельными спинами энергия системы в целом уменьшается, проходит через минимум и при дальнейшем сближении атомов резко возрастает вследствие взаимного отталкивания положительно заряженных ядер (рис. 3, а). Минимальное значение энергии системы оказывается значительно ниже суммы энергий двух атомов водорода. Это означает. что при определенном сближении двух атомов водорода с антипараллельными спинами возможно образование прочной молекулы водорода H 2 . Напротив, сближение двух атомов водорода с параллельными спинами сопровождается непрерывным возрастанием энергии системы (кривая б на рис. 3). Следовательно, образование молекулы водорода в этом случае невозможно.

    Образование химической связи между двумя атомами рассматривается как результат перекрывания их электронных облаков при сближении взаимодействующих атомов. Вследствие такого перекрывания облаков плотность отрицательного электрического заряда в пространстве между двумя ядрами атомов возрастает. Положительно заряженные ядра притягиваются к области перекрывания электронных облаков, в результате чего и образуется молекула. Эти представления о механизме взаимодействия двух атомов легли в основу теории химической связи, именуемой методом валентных связей.

    Из сказанного следует, что валентность элемента определяется числом неспаренных электронов, принимающих участие в образовании химической связи. Валентные электроны элементов главных подгрупп расположены на s- и p-орбиталях внешнего электронного слоя; у элементов побочных подгрупп, за исключением лантаноидов и актиноидов, валентные электроны расположены на d-орбитали последнего (внешнего) слоя и s-орбитали предпоследнего электронного слоя.

    Для правильной оценки валентности того или иного элемента необходимо иметь чёткое представление о распределении электронов по энергетическим уровням и подуровням и количестве неспаренных электронов. Руководствуясь принципом Паули и правилом Гунда, для атома каждого элемента в стационарном (невозбуждённом) состоянии можно определить число неспаренных электронов. Например, в основном состоянии внешний электронный слой атома углерода имеет структуру


    2p

    C
    Из схемы видно, что в невозбуждённом состоянии атом углерода имеет два неспаренных электрона. Следовательно, с их участием может образоваться две электронные пары, осуществляющие две ковалентные связи. Однако хорошо известно, что для углерода значительно более характерны соединения, в которых он четырёхвалентен. Это можно объяснить тем, что в возбужденном (получившем дополнительную энергию) атоме происходит “разъединение” 2s-электронов и переход одного из них на 2p-орбиталь:
    2p

    C*
    Такой атом углерода имеет четыре неспаренных электрона и может принимать участие в образовании четырех ковалентных связей.

    Разъединение спаренных электронов требует затрат энергии, так как спаривание электронов сопровождается понижением потенциальной энергии атома. Однако расход энергии на перевод атома в возбуждённое состояние компенсируется энергией, выделяющейся в результате образования общих электронных пар, связывающих атомы между собой. Затраты энергии на возбуждение атома углерода с избытком компенсируются энергией, выделяющейся при образовании двух дополнительных ковалентных связей. Так, для перевода атома углерода из стационарного состояния 2s 2 2p 2 в возбужденное 2s 1 2p 3 требуется затратить около 400 кДж/моль. Энергия, которая выделяется, например, при образовании С–Н-связи в углеводородах метанового ряда, составляет около 360 кДж. Следовательно, при образовании двух связей С–Н выделится 720 кДж, что превышает энергию возбуждения атома углерода на 320 кДж.

    Если же затраты энергии на образование дополнительного числа неспаренных электронов превышают энергию, выделяющуюся при образовании химической связи, то такие системы энергетически невыгодны и фактически не реализуются. Например, атомы азота, кислорода и фтора в стационарном состоянии имеют соответственно три, два и один неспаренный электрон в L-слое и не имеют в этом слое свободных электронных орбиталей:
    2p 2p 2p

    N O F
    Увеличение числа неспаренных электронов у атомов этих элементов возможно лишь в результате перехода одного из электронов в следующий, M-слой. Затраты энергии, требующиеся для такого перехода, очень велики. Они не компенсируются энергией, выделяющейся при образовании ковалентных связей. Поэтому у атомов названных элементов увеличение числа неспаренных электронов не наблюдается, и за счёт имеющихся в атоме неспаренных электронов атом азота образует три ковалентные связи, атом кислорода  две, а атом фтора  лишь одну связь. Азот, имеющий три неспаренных 2p-электрона, в соединениях с водородом или металлами трехвалентен; кислород, имеющий два неспаренных электрона, двухвалентен, а фтор при взаимодействии с водородом или металлами ведет себя как одновалентный элемент.

    Образование молекул азота и фтора можно представить следующей схемой:

    2p N 2p F

    8 электронов 8 электронов


    8 электронов 8 электронов

    N 2 F 2
    В атомах элементов III периода электроны расположены в трёх слоях, причём внешний слой, характеризующийся главным квантовым числом три, содержит электроны лишь на орбиталях 3s и 3p, в то время как M-орбиталь остаётся вакантной. Например, в атомах серы и хлора в невозбуждённом состоянии электроны располагаются следующим образом:
    S 3d Cl 3d


    3s 3s

    При возбуждении атома серы увеличение числа неспаренных электронов может происходить за счёт перехода на вакантную M-орбиталь только 3p-электронов или 3p- и 3s-электронов:
    S* 3d S** 3d

    Из приведённых схем видно, что в основном состоянии атом серы имеет два неспаренных электрона  это отвечает двухвалентному состоянию серы, которое проявляется в соединениях серы с водородом и металлами. В возбуждённом состоянии атом серы может иметь четыре или шесть неспаренных электронов. В таких случаях сера выступает как четырёхвалентный элемент, образуя, например, диоксид серы SO 2 , или как шестивалентный элемент в молекуле триоксида серы SO 3 .

    Переход атома хлора в возбуждённое состояние сопровождается разъединением спаренных электронов 3s- и 3p-орбиталей и перемещением их на близкую по энергии свободную M-орбиталь. В результате этого количество неспаренных электронов в атоме хлора увеличивается от одного в невозбуждённом атоме до трех, пяти или семи в возбуждённом:


    Cl* 3d Cl** 3d

    Поэтому атом хлора, в отличие от атома фтора, может принимать участие в образовании не только одной, но также трёх, пяти или семи ковалентных связей. Так, в молекуле хлорноватистой кислоты HClO атом хлора образует одну ковалентную связь, в хлористой кислоте HClO 2  три, в хлорноватой кислоте HClO 3  пять, а в молекуле хлорной кислоты HClO 4  семь ковалентных связей.

    Прочность ковалентной связи зависит от степени перекрывания электронных облаков неспаренных электронов двух атомов. Перекрывание электронных облаков может происходить в большей или меньшей мере в зависимости от типа орбиталей, участвующих в образовании химической связи.

    Если перекрывание двух s-орбиталей принять за единицу, то перекрывание s- и p-орбиталей составит уже 1,7, а двух p-орбиталей  3. На рис. 4 схематически показано перекрывание орбиталей различного типа.

    Область перекрывания электронных облаков находится в поле обоих ядер и характеризуется наиболее высокой электронной плотностью. Чем

    Рис. 4. Схематическое изображение перекрывания s- (а), p- (б), s- и p- (в) и d-орбиталей (г).
    больше перекрываются облака электронов, образующих общую пару, тем прочнее связаны между собой атомы, тем выше энергия связи.

    Направленность ковалентной связи.

    Выше указывалось, что электронные орбитали (кроме s-орбиталей) имеют пространственную направленность. Поэтому ковалентная связь, являющаяся результатом перекрывания электронных облаков взаимодействующих атомов, располагается в определенном направлении по отношению к этим атомам. Если перекрывание электронных облаков происходит в направлении прямой, соединяющей ядра взаимодействующих атомов (т. е., по оси связи), то образуется -связь (сигма-связь) (рис. 5).


    Рис. 5. Схематическое изображение сигма-связи в молекулах водорода, хлороводорода и хлора.
    При взаимодействии p-электронных облаков, направленных перпендикулярно к оси связи, образуются две области перекрывания расположенные по обе стороны от этой оси. Такая ковалентная связь называется -связью (пи-связь). -Связь может возникнуть не только за счёт p-электронов, но также за счет перекрывания d- и p-электронных облаков (б) или d-облаков (в) (рис. 6).


    Рис. 6. Схематическое изображение -связи.
    Пользуясь представлением о направленности ковалентных связей, можно объяснить пространственное расположение атомов в некоторых молекулах. Например, в молекуле воды связь между атомами осуществляется двумя ковалентными связями, образующимися в результате перекрывания 1s-электронных облаков двух атомов водорода с электронными облаками двух неспаренных 2p-электронов атома кислорода (рис. 7). p-Электронные облака атома кислорода взаимно перпендикулярны, поэтому следует ожидать, что и молекула воды будет иметь угловое строение. Этот вывод подтверждается структурными исследованиями. Следует, однако, отметить, что угол между ковалентными связями составляет 104,5°, а не 90°, как можно было ожидать. Различие рассчитанных и экспериментально полученных величин валентных углов наблюдается и во многих других соединениях. Объяснением этого может служить гибридизация атомных орбиталей.

    Рис. 7. Строение молекулы воды.


    При образовании молекулы электронные облака изменяют свою форму. Например, вместо неравноценных s- и p-электронных облаков могут образовываться равноценные гибридные (смешанные) электронные облака. В результате гибридизации электронные облака приобретают более вытянутую форму. Это обеспечивает большее их перекрывание и, следовательно, увеличивает энергию ковалентной связи. Выигрыш энергии превышает затраты её на осуществление гибридизации электронных орбиталей. На рис. 8 показана форма гибридного sp-облака. Из s- и p-орбитали образуются две гибридные sp-орбитали, вытянутые в противоположных направлениях. В зависимости от числа и типа орбиталей, участвующих в гибридизации, взаимное расположение гибридных орбиталей в пространстве будет различным. Если в гибридизации принимают участие одна s- и две p-орбитали (sp 2 -гибридизация), то образуются три равноценные гибридные орбитали, располагающиеся в одной плоскости и ориентированные друг относительно друга под углом 120 ° (рис. 9).

    Рис. 8. Расположение электронных облаков при sp-гибридизации: а  (s + p)-облака, б  два sp-облака.

    Рис. 9. Расположение электронных облаков при sp 2 -гибридизации: а  (s + p + p)-облака, б  три sp 2 -облака.

    При гибридизации типа sp 3 , в которой принимает участие одна s- и три p-орбитали, образующиеся равноценные четыре орбитали вытянуты в направлениях к вершинам тетраэдра.

    У атомов элементов III и последующих периодов, имеющих d-орбитали, в гибридизации часто принимают участие две d-, одна s- и три p-орбитали (sp 3 d 2 -гибридизация). В этом случае образуется шесть равноценных гибридных орбиталей, направленных к вершинам октаэдра.

    -Связи осуществляются за счёт перекрывания как гибридизованных, так и негибридизованных орбиталей, -связи  исключительно за счёт перекрывания негибридизованных орбиталей. Направленность -связей обусловливает структуру молекулы. Одинарная связь между атомами  всегда -связь. В молекулах, содержащих кратные связи, одна -связь, а остальные -связи. Например, в молекуле азота, имеющей тройную связь (:NN:), содержится одна - и две -связи.

    Геометрическая форма молекул соединений зависит от типа гибридных орбиталей, участвующих в образовании ковалентных связей. Гибридным sp-орбиталям отвечает линейная структура молекул, sp 2 -гибридизация приводит к образованию плоских треугольных молекул, при sp 3 -гибридизации образуются молекулы тетраэдрической формы, результат гибридизации типа sp 3 d 2  молекулы октаэдрической конфигурации.


    Рис. 10. Расположение электронных облаков при sp 3 -гибридизации: а  (s + p + p + p)-облака, б  четыре sp 3 -облака.

    Например, в молекуле метана атом углерода образует четыре -связи с атомами водорода, при этом осуществляется, sp 3 -гибридизация орбиталей, и молекула имеет форму тетраэдра. В молекуле этилена каждый атом углерода соединен -связями с атомами водорода. Соединение двух атомов углерода между собой осуществляется одной - и одной -связью. Поскольку одна p-орбиталь атома углерода участвует в образовании -связи, гибридизация sp 2 осуществляется за счет одного s- и двух p-электронов, и молекула этилена имеет треугольную форму. В молекуле ацетилена H–CC–H имеются две -связи, образованные двумя p-орбиталями атома углерода. Следовательно, в этом случае в гибридизации может принять участие лишь одна, оставшаяся свободной, p-орбиталь. Именно поэтому в молекуле ацетилена происходит sp-гибридизация, и молекула ацетилена линейна. В молекуле диоксида углерода O=C=O атом углерода образует две -связи с атомами кислорода. В образовании -связей принимают участие две гибридные sp-орбитали, поэтому молекула CO 2 линейна.

    Полярные молекулы.

    При рассмотрении химической связи с точки зрения взаимодействия двух ядер и образования общей для них электронной пары нельзя провести резкую границу между ионной и ковалентной связями. Если молекула образована одинаковыми атомами, общая электронная пара принадлежит обоим атомам в равной мере и оба атома электрически нейтральны. Однако в тех случаях, когда молекула состоит из различных атомов, связующая электронная пара обычно смещена в сторону одного из них, а именно в сторону того атома, который обладает бóльшим сродством к электрону. Например, в соединениях галогенов с водородом общая электронная пара смещена в направлении атома галогена, в результате чего та часть молекулы, в которой находится галоген, приобретает некоторый частичный отрицательный заряд, а противоположная, где находится водород, заряжается частичным положительным зарядом. Однако наличие частичных зарядов в отдельных частях молекулы еще не означает образования ионов. Ковалентная связь, при образовании которой электронная пара смещается в сторону одного из атомов, называется полярной связью.

    В соединениях элементов одного периода общая электронная пара смещается в сторону атома того элемента, который в таблице стоит правее. В соединениях элементов одной подгруппы электронная пара смещается в направлении атома элемента с меньшей атомной массой.

    Полярные молекулы можно рассматривать как электрические диполи, в которых разные по знаку, но одинаковые по величине заряды расположены на определенном расстоянии друг от друга. Мерой полярности молекул служит дилольный момент, представляющий собой произведение величины заряда на расстояние между центрами положительного и отрицательного зарядов в молекуле. Наличие или отсутствие дипольного момента у молекулы часто позволяет судить о её геометрическом строении. Например, для молекулы типа AB 2 возможно линейное или угловое строение:




    Линейная структура характеризуется симметричным распределением зарядов и отвечает неполярной молекуле. Напротив, в молекуле, имеющей угловое строение, заряды распределяются асимметрично. Такая молекула полярна. Из того факта, что молекула CO 2 неполярна, а мслекула SO 2 обладает дипольным моментом, можно сделать вывод о линейном строении молекулы диоксида углерода и угловом строении молекулы диоксида серы.

    Зависимость между полярностью молекулы и полярностью связей между атомами в этой молекуле не однозначна. Так, отсутствие в молекуле полярных свявей обусловливает и неполярность самой молекулы. Напротив, наличие в молекуле полярных связей еще не означает полярности молекулы. Например, линейная молекула диоксида углерода O=C=O и треугольная молекула трифторида бора BF 3 неполярны, хотя имеют полярные связи. Неполярность этих молекул объясняется совпадением центров тяжести положительных и отрицательных зарядов в них вследствие симметричности расположения связей в молекулах. В большинстве случаев неполярными являются также молекулы, содержащие гибридизованные связи тила sp, sp 2 , sp 3 , sp 3 d 2 . Молекулы, связи в которых образованы двумя или тремя чистыми p-орбиталями (например, H 2 S, AsCl 3), полярны.

    Полярность молекул в значительной мере определяет свойства веществ. Полярные молекулы поворачиваются друг к другу разноимённо заряженными полюсами, и между ними возникает взаимное притяжение. Поэтому вещества, образованные полярными молекулами, имеют более высокие температуры плавления и кипения, чем вещества, молекулы которых неполярны.

    Жидкости, молекулы которых полярны, имеют более высокую растворяющую способность. При этом чем больше полярность молекул растворителя, тем выше растворимость в ней полярных или ионных соединений. Эта зависимость объясняется тем, что полярные молекулы растворителя за счет диполь-дипольного или ион-дипольного взаимодействия с растворяемым веществом способствуют распаду растворяемого вещества на ионы. Например, раствор хлороводорода в воде, молекулы которой полярны, хорошо проводит электрический ток. Раствор хлороводорода в бензоле не обладает заметной электропроводностью. Это указывает на отсутствие ионизации хлороводорода в бензольном растворе, так как молекулы бензола неполярны.

    Количественную характеристику полярности связи можно получить, сопоставляя значения электроотрицательности элементов. Эта величина представляет собой арифметическую сумму энергии ионизации и сродства к электрону. За единицу принята электроотрицательность лития. Электроотрицательность других элементов выражается в относительных величинах и равна 0,9 для натрия, 0,8 для калия, 2,1 для водорода, 3 для азота, 3,5 для кислорода, 3 для хлора, 4 для фтора, 2,5 для углерода и т. д.

    Так, полярность связи в молекуле хлороводорода (в %) можно определить по формуле:

    ,

    где э Cl  электроотрицательность хлора; э H  электроотрицательность водорода. Подставляя соответствующие значения, находим:

    .

    Если полярность ионной связи принять за 100 %, а ковалентной  за 0, то найденные 18 % означают, что в молекуле хлороводорода связь на 18 % имеет ионный и на 82  ковалентный характер.

    Представление о смещении общей электронной пары в направлении элемента с большей величиной электроотрицательности можно получить из рис. 11.


    Рис. 11. Положение общей электронной пары в молекулах фтора, фтороводорода и фторида натрия.
    В тех случаях, когда атомы в молекуле связаны между собой кратными связями, оценить полярность связи на основании электроотрицательности не всегда удается. Например, разность электроотрицательностей хлора и водорода составляет 0,9 (3 – 2,1). Эта величина близка к разности электроотрицательностей атомов кислорода и углерода (3,5 – 2,5 = 1). На этом основании можно было бы предположить, что полярности молекул HCl и CO будут близки; в действительности же дипольный момент хлороводорода превышает дипольный момент монооксида углерода в десять раз. Кроме того, отрицательный конец диполя в молекуле CO направлен в сторону менее отрицательного атома углерода. Как это объяснить?

    При образовании молекулы CO неспаренные электроны атомов углерода и кислорода образуют две связи:



    Общие электронные пары смещаются в сторону более электроотрицательного атома кислорода. Одновременно с этим за счёт свободной орбитали атома углерода и неподелённой электронной пары атома кислорода образуется третья связь. Это приводит к смещению электронной плотности от атома кислорода к атому углерода настолько, что избыточная электронная плотность оказывается на атоме углерода, а не на атоме кислорода как более электроотрицательном элементе. Таким образом, переход неподелённой электронной пары от атома кислорода к атому углерода приводит к понижению полярности молекулы монооксида углерода. Примером полярных молекул могут служить молекулы H 2 O, NH 3 , HCl.

    В многоатомных молекулах сложных веществ часть атомов может быть связана ионной связью, часть  ковалентной, причем ковалентные связи могут быть как полярными, так и неполярными. В таких случаях полярность молекулы в целом зависит как от степени полярности отдельных связей, так и от их расположения в молекуле, т. е. от строения многоатомной молекулы.

    Вещества, молекулы которых полярны, проводят электрический ток в растворённом и расплавленном виде, в большинстве случаев хорошо растворяются в полярных растворителях, например в воде. Вещества, молекулы которых неполярны, лучше растворяются в неполярных растворителях, например в бензоле, четырёххлористом углероде и т. п.

    Ионные соединения, образованные из атомов, сильно различающихся по химическим свойствам элементов, можно рассматривать как предельный случай полярной ковалентной связи, когда общая электронная пара целиком переходит к одному из атомов соединения.

    Координационная, водородная и металлическая связи.

    Координационная связь. Выше показано, что полярная и неполярная ковалентные связи образуются общей парой электронов, представленной двумя атомами, между которыми возникает химическая связь. Например, атом азота, имеющий в стационарном состоянии электронную структуру внешнего слоя 2s 2 2p 3 , за счёт трёх неспаренных p-электронов образует три ковалентные связи с атомами водорода, превращаясь в аммиак. Два спаренных s-электрона атома азота в этой реакции участия не принимают, эта электронная пара остается неподелённой. Если точками обозначить электроны, первоначально принадлежавшие атому азота, а крестиками  принадлежавшие атомам водорода, то электронную структуру молекулы аммиака можно представить следующей схемой:

    Из восьми электронов внешнего электронного слоя атома азота шесть принимают участие в образовании трёх ковалентных связей и являются общими для атома азота и атомов водорода, а два принадлежат только атому азота. Эта электронная пара может принимать участие в образовании ковалентной связи с другим атомом, имеющим свободную электронную орбиталь.

    Например, у атома водорода на 1s-орбитали находится один электрон, а у иона водорода эта орбиталь свободна. Поэтому между молекулой аммиака и ионом водорода возникает ковалентная связь, в которой неподеленная электронная пара атома азота становится общей для двух атомов. Образование иона аммония можно представить схемой:


    Другой пример. Атом бора с конфигурацией внешнего электронного слоя 2s 2 2p 1 в трифториде бора приобретает электронную структуру 2s 2 2p 4 . Следовательно, атом бора в этом соединении имеет одну вакантную p-орбиталь и может принять на неё электронную пару. Действительно, трифторид бора способен соединяться с молекулой аммиака:

    Из приведенных схем видно, что в образовании химической связи участвует неподелённая пара электронов, ранее принадлежавшая только атому азота. При образовании химической связи эта пара электронов становится общей для обоих атомов, дополняя до восьми количество электронов во внешнем электронном слое. Атом (или ион), представляющий свою неподелённую пару при образовании химической связи, называется донором. Атом (или ион), принимающий на свободную орбиталь эту неподеленную электронную пару, называется акцептором. Ковалентную связь, возникающую между двумя атомами за счет неподелённой электронной пары одного из них, называют донорно-акцепторной или координационной связью. В рассмотренных примерах донором электронной пары служит атом азота, а акцепторами  ион водорода и атом бора.

    Экспериментально доказано, что в ионе NH 4 + все четыре связи азота с водородом равноценны, хотя три из них возникли по механизму образования ковалентной связи, а одна  донорно-акцепторная. Следовательно, ковалентная и координационная связи тождественны по свуей природе и различаются лишь способом образования.

    Координационная связь осуществляется при образовании координационных соединений. В таких соединениях может проявляться одновременно несколько типов химической связи. Так, в координационном соединении SO 4 между комплексным катионом 2+ и ионом сульфата SO 4 2- осуществляется ионная связь. Между ионом меди Cu 2+ и четырьмя молекулами аммиака NH 3 существует донорно-акцепторная связь. Наконец, между атомами азота и водорода в аммиаке, а также между атомами серы и кислорода в ионе сульфата возникает полярная ковалентная связь.

    Водородная связь. Название этого типа химической связи показывает, что в её образовании принимает участие атом водорода. Этот тип связи очень распространён и играет значительную роль во многих химических процессах.

    Возникновение водородной связи можно объяснить действием электростатических сил. В молекуле воды между атомами водорода и кислорода существует полярная ковалентная связь. При её образовании электронное облако, принадлежащее атому водорода, сильно смещается к атому кислорода, который характеризуется высокой электроотрицательностью. В результате этого атом кислорода приобретает отрицательный заряд, а ядро водорода (протон) почти полностью лишается электронного облака. Между протоном и отрицательно заряженным атомом кислорода соседней молекулы воды возникает электростатическое притяжение. Протон, обладающий ничтожно малыми размерами, способен проникать в электронные оболочки других атомов, что и приводит к образованию водородной связи. В результате проявления водородной связи происходит ассоциация молекул воды и связывание их в димеры, тримеры, тетрамеры и т. д.

    Водородная связь образуется и во фтороводороде: HF---HF, где донором электронов является атом фтора. Процесс образования водородной связи при взаимодействии двух молекул HF можно представить следующей схемой:


    Таким образом, возникновения водородной связи следует ожидать в тех случаях, когда атом водорода в молекуле соединения непосредственно связан с атомом элемента, обладающего высокой электроотрицательностью. Чаще всего водородная связь проявляется в соединениях фтора, кислорода и в меньшей мере в соединениях азота.

    Для оценки прочности связей между атомами лользуются понятием энергия связи. Энергия связи  это работа, необходимая для разрыва этой связи во всех молекулах, составляющих один моль вещества. Это одна из важнейших характеристик химической связи, измеряют её в килоджоулях на моль (кДж/моль). Энергия связи между двумя данными атомами зависит от её кратности, которая определяется числом электронных пар, связывающих эти атомы. С увеличением кратности связи возрастает и энергия связи. Например, энергия одинарной связи C–C в молекуле этана равна 263 кДж/моль, двойной связи C=C в этилене составляет 422 кДж/моль, тройной связи CC в молекуле ацетилена равна 535 кДж/моль. Важной характеристикой связи является также её длина, которая измеряется расстоянием между ядрами связанных атомов. При увеличении кратности связи её длина уменьшается: C–C 0,154 нм; C=C 0,134 нм; CC 0,120 нм.

    Энергия водородной связи значительно меньше энергии ковалентной связи и в среднем составляет 10–40 кДж/моль (энергия ковалентной связи кислорода с водородом равна 460 кДж/моль, энергия связи атомов в молекуле азота  920 кДж/моль). Однако энергии водородной связи достаточно, чтобы вызвать ассоциацию молекул. Вследствие ассоциации, затрудняющей отрыв молекул друг от друга, такие вещества, как фтороводород, вода, аммиак, имеют более высокие, чем можно было ожидать, температуры плавления и кипения. Водородная связь обусловливает некоторые важные особенности воды, а также таких веществ, как белки и нуклеиновые кислоты.

    Металлическая связь. Металлическая связь  это связь, в которой электроны каждого отдельного атома принадлежат всем атомам, находящимся в контакте. В результате перекрывания валентных орбиталей атомов возникают энергетические уровни, общее число которых равно числу взаимодействующих атомов. В кристалле, содержащем один моль атомов, количество энергетических уровней равно числу Авогадро, а разность энергий двух соседних уровней имеет порядок 10 -23 В. Поэтому образуется практически непрерывная энергетическая зона, в пределах которой переход электрона на ближайший более высокий уровень происходит очень легко.

    Представление об энергетической электронной зоне является основополагающим принципом теории твердого тела. По аналогии с изолированным атомом, в котором имеются разрешенные и запрещённые энергетические уровни электронов, в кристаллах также существуют разрешенные и запрещённые зоны для электронов. В процессе образования кристалла по мере сближения атомов сначала происходит превращение внешних орбиталей в энергетические зоны, а при дальнейшем сближении атомов начинается перекрывание энергетических зон. Наличие в энергетической зоне металлов очень близких по энергии дозволенных подуровней дает возможность электронам перемещаться в кристалле довольно легко, что обеспечивает высокие электропроводность и теплопроводность металлов.

    В отличие от металлов у кремния, например, при образовании кристалла происходит гибридизация атомных орбиталей типа sp 3 , что приводит к образованию единой валентной зоны, все 3s- и 3p-электроны которой вовлечены в образование химических связей. Вакантная 4я-зона  зона проводимости  отделена от валентной зоной запрещённых энергий. Из-за отсутствия электронов в зоне проводимости кремний при низких температурах не проводит электрический ток. Однако запрещённая зона у кремния очень узка и при нагревании, освещении или усилении электрического поля часть валентных электронов переходит в зону проводимости. Кремний становится проводником электрического тока. Такие вещества называются полупроводниками.

    Состояние вещества

    Вещество может находиться в газообразном, жидком, твердом состоянии и в состоянии плазмы.

    Газообразное состояние вещества характеризуется сравнительно малыми силами межмолекулярного взаимодействия. Молекулы газов находятся на больших расстояниях друг от друга, поэтому газы имеют большую сжимаемость. Их молекулы находятся в псстоянном хаотическом движении, что объясняет способность газов равномерно заполнять весь предоставленный объём, приобретая объём и форму сосуда, в котором они находятся.

    Жидкости по своим свойствам занимают промежуточное положение между газами и твердыми веществами. Чем выше температура, тем больше свойства жидкостей приближаются к свойствам газов, и, наоборот, чем ниже температура, тем больше проявляются те свойства жидкостей, которые приближают их к твердым веществам. Жидкости обычно не имеют собственной формы, а приобретают форму сосуда, в котором находятся; только в очень небольших количествах они способны сохранять форму капли. В отличие от газов жидкости при данной температуре занимают совершенно определенный объем. Это объясняется наличием заметных сил взаимного притяжения отдельных молекул жидкости. Молекулы в жидкостях размещаются значительно плотнее, чем в газах; этим и объясняется очень малая сжимаемость всех жидкостей. Рентгенографическое исследование жидкостей показало, что они имеют зачатки кристаллического строения.

    Твёрдые вещества построены из молекул, атомов и ионов, прочно связанных между собой, и поэтому имеют определенные объем и форму. Частицы твердого вещества не могут свободно перемещаться, они сохраняют взаимное расположение, совершая колебания около центров равновесия, поэтому для изменения объема и формы твердого вещества требуется усилие. Различают два состояния твердых веществ  кристаллическое и аморфное. Кристаллы каждого кристаллического вещества имеют характерную для них форму. Так, кристаллы хлорида натрия имеют форму куба (рис. 12), нитрата калия  призмы и т. д.

    Рис. 12. Схема и модель кристаллической решётки хлорида натрия.
    Аморфные вещества представлявт собой агрегаты беспорядочно расположенных молекул. В отличие от кристаллических веществ, имеющих вполне определённую температуру плавления, аморфные вещества плавятся в широком диапазоне температур. При нагревании они постепенно размягчаются, начинают растекаться и, наконец, становятся жидкими. Аморфные вещества иногда рассматривают как жидкости с очень большой вязкостью. В зависимости от условий, при которых происходит переход из расплавленного состояния в твердое, одно и то же вещество можно получить как в кристаллическом, так и в аморфном состоянии.

    Плазма  ионизированный газ с достаточно высокой концентрацией заряженных частиц, содержащий практически одинаковые количества частиц с положительным и отрицательным зарядами. В земных природных условиях плазма  явление редкое. В верхних слоях атмосферы, в значительной степени подвергающихся воздействию ионизирующих агентов, слабо ионизированная плазма  ионосфера  присутствует постоянно, а в космическом пространстве плазма представляет собой наиболее распространенное состояние вещества.

    Кристаллические решётки

    В кристаллических веществах частицы, из которых построены кристаллы, размещены в пространстве в определенном порядке и образуют лространственную решётку. В зависимости от характера частиц, находящихся в узлах пространственной решётки, различают молекулярные, атомные, ионные и металлические решётки (рис. 13).

    В узлах молекулярной решётки находятся полярные или неполярные молекулы, связанные между собой слабыми силами притяжения. Молекулярную решётку имеют большинство органических веществ, а также ряд неорганических соединений, например, вода и аммиак. Вещества с молекулярной решёткой имеют сравнительно невысокую температуру плавления.

    Атомная решётка характеризуется тем, что в её узлах размещены атомы, связанные между собой общими электронными парами. Вещества с атомной решёткой (например, алмаз) очень тверды и имеют очень высокую температуру плавления.

    В узлах ионной решётки расположены положительно и отрицательно эаряженные ионы, чередующиеся друг с другом. Ионные кристаллические решётки характерны для большинства солей, оксидов и оснований.


    Рис. 13. Основные типы кристаллических решёток твёрдого вещества.
    В узлах металлической решётки наряду с нейтральными атомами размещаются положительно заряженные ионы данного металла. Между ними свободно перемещаются электроны  так называемый электронный газ. Такое строение металлов обусловливает их общие свойства: металлический блеск, электро- и теплопроводность, ковкость и др.

    Прочность связи между частицами, из которых построен кристалл, характеризуется энергией кристаллической решётки  работой, необходимой для ее разрушения. Кристаллическая решётка разрушается лри плавлении, испарении (сублимации) или растворении вещества. Поэтому теплота плавления, теплота сублимации и теплота растворения зависят от энергии кристаллической решётки. При прочих равных условиях растворимость солей тем больше, чем меньше энергия их кристаллической решётки.

    Переходит преимущественно к атому с большей электроотрицательностью. Это притяжение ионов как разноимённо заряженных тел. Примером может служить соединение CsF , в котором «степень ионности» составляет 97 %. Ионная связь - крайний случай поляризации ковалентной полярной связи . Образуется между типичными металлом и неметаллом . При этом электроны у металла полностью переходят к неметаллу, образуются ионы.

    A ⋅ + ⋅ B → A + [ : B − ] {\displaystyle {\mathsf {A}}\cdot +\cdot {\mathsf {B}}\to {\mathsf {A}}^{+}[:{\mathsf {B}}^{-}]}

    Между образовавшимися ионами возникает электростатическое притяжение, которое называется ионной связью. Вернее, такой взгляд удобен. На деле ионная связь между атомами в чистом виде не реализуется нигде или почти нигде, обычно на деле связь носит частично ионный, а частично ковалентный характер. В то же время связь сложных молекулярных ионов часто может считаться чисто ионной. Важнейшие отличия ионной связи от других типов химической связи заключаются в ненаправленности и ненасыщаемости. Именно поэтому кристаллы, образованные за счёт ионной связи, тяготеют к различным плотнейшим упаковкам соответствующих ионов.

    Характеристикой подобных соединений служит хорошая растворимость в полярных растворителях (вода, кислоты и т. д.). Это происходит из-за заряженности частей молекулы. При этом диполи растворителя притягиваются к заряженным концам молекулы, и, в результате Броуновского движения , «растаскивают» молекулу вещества на части и окружают их, не давая соединиться вновь. В итоге получаются ионы, окружённые диполями растворителя.

    При растворении подобных соединений, как правило, выделяется энергия, так как суммарная энергия образованных связей растворитель-ион больше энергии связи анион-катион. Исключения составляют многие соли азотной кислоты (нитраты), которые при растворении поглощают тепло (растворы охлаждаются). Последний факт объясняется на основе законов, которые рассматриваются в физической химии . Взаимодействие ионов

    Если атом теряет один или несколько электронов, то он превращается в положительный ион - катион (в переводе с греческого - "идущий вниз). Так образуются катионы водорода Н+, лития Li+, бария Ва2+. Приобретая электроны, атомы превращаются в отрицательные ионы - анионы (от греческого "анион" - идущий вверх). Примерами анионов являются фторид ион F−, сульфид-ион S2−.

    Катионы и анионы способны притягиваться друг к другу. При этом возникает химическая связь, и образуются химические соединения. Такой тип химической связи называется ионной связью:

    Ионная связь - это химическая связь, образованная за счет электростатического притяжения между катионами и анионами.

    Энциклопедичный YouTube

      1 / 3

      ✪ Ионная связь. Химия 8 класс

      ✪ Ионная, ковалентная и металлическая связи

      ✪ Ионная химическая связь | Химия 11 класс #3 | Инфоурок

      Субтитры

    Пример образования ионной связи

    Рассмотрим способ образования на примере "хлорида натрия" NaCl . Электронную конфигурацию атомов натрия и хлора можно представить: N a 11 1 s 2 2 s 2 2 p 6 3 s 1 {\displaystyle {\mathsf {Na^{11}1s^{2}2s^{2}2p^{6}3s^{1}}}} и C l 17 1 s 2 2 s 2 2 p 6 3 s 2 3 p 5 {\displaystyle {\mathsf {Cl^{17}1s^{2}2s^{2}2p^{6}3s^{2}3p^{5}}}} . Это атомы с незавершенными энергетическими уровнями. Очевидно, для их завершения, атому натрия легче отдать один электрон, чем присоединить семь, а атому хлора легче присоединить один электрон, чем отдать семь. При химическом взаимодействии атом натрия полностью отдает один электрон, а атом хлора принимает его.

    Схематично это можно записать так:

    N a − e → N a + {\displaystyle {\mathsf {Na-e\rightarrow Na^{+}}}} - ион натрия, устойчивая восьмиэлектронная оболочка ( N a + 1 s 2 2 s 2 2 p 6 {\displaystyle {\mathsf {Na^{+}1s^{2}2s^{2}2p^{6}}}} ) за счет второго энергетического уровня. C l + e → C l − {\displaystyle {\mathsf {Cl+e\rightarrow Cl^{-}}}} - ион хлора, устойчивая восьмиэлектронная оболочка.

    Между ионами N a + {\displaystyle {\mathsf {Na^{+}}}} и C l − {\displaystyle {\mathsf {Cl^{-}}}} возникают силы электростатического притяжения, в результате чего образуется соединение.

    Все химические соединения образуются посредством образования химической связи. И в зависимости от типа соединяющихся частиц различают несколько видов. Самые основные – это ковалентная полярная, ковалентная неполярная, металлическая и ионная. Сегодня речь пойдет об ионной.

    Вконтакте

    Что такое ионы

    Она образуется между двумя атомами – как правило, при условии, что разница электроотрицательностей между ними очень велика. Электроотрицательность атомов и ионов оценивается по шкале Поллинга.

    Поэтому для того чтобы правильно рассматривать характеристики соединений, было введено понятие ионности. Эта характеристика позволяет определить на сколько процентов конкретная связь представляет именно ионную.

    Соединение с максимальной ионностью это фторид цезия, в котором она составляет примерно 97%. Ионная связь характерна для веществ, образованных атомами металлов, располагающихся в первой и второй группе таблицы Д.И. Менделеева, и атомами неметаллов, находящихся в шестой и седьмой группах этой же таблицы.

    Обратите внимание! Стоит заметить, что не существует соединения, в котором взаимосвязь исключительно ионная. Для открытых на данный момент элементов нельзя добиться настолько большой разницы в электроотрицательности, чтобы получить 100%-ное ионное соединение. Поэтому определение ионной связи не совсем корректно, так как реально рассматриваются соединения с частичным ионным взаимодействием.

    Зачем же ввели этот термин, если реально такого явления не существует? Дело в том, что этот подход помог объяснить многие нюансы в свойствах солей, оксидов и других веществ. Например, почему они хорошо растворимы в воде, а их растворы способны проводить электрический ток . Это невозможно объяснить ни с каких других позиций.

    Механизм образования

    Образование ионной связи возможно только при соблюдении двух условий: если атом металла, участвующий в реакции, способен легко отдать электроны, находящиеся на последнем энергетическом уровне, а атом неметалла способен эти электроны принять. Атомы металлов по своей природе являются восстановителями, то есть способны к отдаче электронов .

    Это связано с тем, что на последнем энергетическом уровне в металле могут находится от одного до трех электронов, а радиус самой частицы достаточно большой. Поэтому сила взаимодействия ядра с электронами на последнем уровне настолько мала, что они могут легко уходить с него. С неметаллами ситуация совершенно иная. Они имеют маленький радиус , а количество собственных электронов на последнем уровне может быть от трех и до семи.

    И взаимодействие между ними и положительным ядром достаточно сильная, но любой атом стремится к завершению энергетического уровня, поэтому атомы неметалла стремятся получить недостающие электроны.

    И когда встречаются два атома – металла и неметалла, происходит переход электронов от атома металла к атому неметалла, при этом образуется химическое взаимодействие.

    Схема соединения

    На рисунке наглядно видно, как именно осуществляется образование ионной связи. Изначально существуют нейтрально заряженные атомы натрия и хлора.

    Первый имеет один электрон на последнем энергетическом уровне, второй семь. Далее происходит переход электрона от натрия к хлору и образование двух ионов. Которые соединяются между собой с образованием вещества. Что такое ион? Ион – это заряженная частица, в которой количество протонов не равно количеству электронов .

    Отличия от ковалентного типа

    Ионная связь за счет своей специфичности не имеет направленности. Это связано с тем, что электрическое поле иона представляет собой сферу, при том оно убывает или возрастает в одном направлении равномерно, подчиняясь одному и тому же закону.

    В отличие от ковалентной, которая образуется за счет перекрывания электронных облаков.

    Второе отличие заключается в том, что ковалентная связь насыщенна . Что это значит? Количество электронных облаков, которые могут принимать участие в взаимодействии ограниченно.

    А в ионной за счет того, что электрическое поле имеет сферическую форму, оно может соединяться с неограниченным количеством ионов. А значит, можно говорить о том, что она не насыщена.

    Также она может характеризоваться еще несколькими свойствами:

    1. Энергия связи – это количественная характеристика, и она зависит от количества энергии, которое необходимо затратить на ее разрыв. Она зависит от двух критериев – длины связи и заряда ионов , участвующих в ее образовании. Связь тем прочнее, чем короче ее длина и больше заряды ионов, ее формирующих.
    2. Длина – этот критерий уже упоминался в предыдущем пункте. Он зависит исключительно от радиуса частиц, участвующих в образовании соединения. Радиус атомов изменяется следующим образом: уменьшается по периоду при увеличении порядкового номера и увеличивается в группе.

    Вещества с ионной связью

    Она характерна для значительного числа химических соединений. Это большая часть всех солей, в том числе и всем известная поваренная соль. Она встречается во всех соединениях, где есть непосредственный контакт между металлом и неметаллом . Вот некоторые примеры веществ с ионной связью:

    • хлориды натрия и калия,
    • фторид цезия,
    • оксид магния.

    Также она может проявляться и в сложных соединениях.

    Например, сульфат магния.

    Перед вами формула вещества с ионной и ковалентной связью:

    Между ионами кислорода и магния будет образовываться ионная связь, а вот сера и соединены между собой уже с помощью ковалентной полярной.

    Из чего можно сделать вывод, что ионная связь характерна для сложных химических соединений.

    Что такое ионная связь в химии

    Виды химической связи — ионная, ковалентная, металлическая

    Вывод

    Свойства напрямую зависят от устройства кристаллической решетки . Поэтому все соединения с ионной связью хорошо растворимы в воде и других полярных растворителях, проводят и являются диэлектриками. При этом довольно тугоплавки и хрупки. Свойства этих веществ довольно часто применяются в устройстве электрических приборов.

    В результате взаимного электростатического притяжения между молекулами и атомами химических элементов может возникнуть ионная связь. Примеры таких соединений можно наблюдать в различных реакциях гальванических батарей, даже простая поваренная соль имеет соединение данного типа. О том, что такое ионная связь, чем она отличается от ковалентной, рассказывается в этой статье.

    Простые и сложные ионы

    В ионной связи участвуют и отдельные атомы, и различные их соединения. Все участники такой связи имеют электрический заряд и удерживаются в соединении благодаря электростатическим силам. Различают ионы простые, такие как Na + , K + , которые относятся к катионам; F - , Cl - - относящиеся к анионам. Также бывают ионы сложные, состоящие из двух и более атомов. Примеры ионной химической связи на базе сложных ионов - анионы OH - , NO 3 - , катион NH 4 + . Простые ионы с положительным зарядом образуются из атомов с низким ионизационным потенциалом - обычно это металлы главных подгрупп I-II группы. Простые ионы, имеющие отрицательный заряд, в большинстве случаев являются типичными неметаллами.

    Ковалентная и ионная связь

    Примеры систем, созданных из двух частиц, обладающих противоположными электрическими зарядами, показывают, что в таком случае всегда возникает электрическое поле. Это означает, что электрически активные ионы могут притягивать и другие ионы в различных направлениях. Благодаря силам электрического притяжения и существует ионная связь. Примеры таких соединений показывают два принципиальных различия между ионной и ковалентной связью.

    1. Электрическое поле иона уменьшается в зависимости от расстояния в любом направлении. Поэтому степень взаимодействия между ионами не зависит от того, как в пространстве эти ионы расположены. Из этих наблюдений можно сделать вывод, что ионная связь скалярна, то есть не обладает направленностью.
    2. Два иона, обладающие различными зарядами, притягивают не только друг друга, но и соседние заряженные ионы - к определенному иону могут присоединиться различное число заряженных частиц противоположного знака. В этом заключается еще одно различие между ковалентной и ионной связью: последняя не имеет насыщаемости. Число присоединенных ионов определяется линейными размерами заряженных частиц, а также тем принципом, что силы притяжения ионов противоположных зарядов должны преобладать над силами отталкивания, которые действуют между одинаково заряженными частицами.

    Ассоциации

    Поскольку насыщаемость и направленность у ионов отсутствуют, то они склонны соединяться друг с другом в различных комбинациях. Это свойство ученые назвали ассоциацией. При высоких температурах ассоциация невелика: кинетическая энергия молекул и ионов довольно высока, и в газовом состоянии вещества с ионным видом связи находятся в виде отдельных молекул. Но средние и низкие температуры делают возможным образование различных структурных соединений, за образование которых несет ответственность ионный тип связи. Примеры строения веществ в жидком и твердом состоянии показаны на рисунках.

    Как можно видеть, ионная связь создает кристаллическую решетку, в которой каждый элемент окружен ионами с противоположным знаком заряда. При этом такое вещество обладает одинаковыми характеристиками в различных направлениях.

    Поляризация

    Как известно, при присоединении электрона к атому неметалла выделяется определенное количество энергии. Однако присоединение второго электрона требует уже затрат энергии, поэтому образование простых многозарядных анионов становится энергетически убыточным. Вместе с тем такие элементы, как SO 4 2- , СО 3 2- показывают, что сложные многозарядные отрицательные ионы могут быть энергетически устойчивыми, так как электроны в соединении распределены таким образом, чтобы заряд каждого атома был не больше заряда самого электрона. Такие правила дикутует стандартная ионная связь.

    Примеры типичных элементов, которые встречаются на каждом шагу (NaCl, CsF), не показывают полного разделения положительного и отрицательного зарядов. Например, в кристалле поваренной соли эффективный отрицательный заряд будет составлять всего около 93 % полного заряда электрона. Данный эффект наблюдается и в других соединениях. Такое неполное разделение зарядов называется поляризацией.

    Причины поляризации

    Причиной поляризации всегда является электрическое поле. Внешний слой электронов испытывает наибольшее смещение при поляризации. Однако следует заметить, что различные ионы имеют неодинаковую поляризуемость: чем слабее связь внешнего электрона с ядром, тем легче поляризуется весь ион и тем сильнее деформируется электронное облако.

    Поляризация ионов оказывает известное действие на соединения, образующие ионную связь. Примеры химических реакций показывают, что наибольшим поляризующим действием обладает ион водорода Н + , поскольку он обладает наименьшими размерами и полным отсутствием электронного облака.

    Похожие статьи