• Органическая химия для "чайников": история, понятия. Советы изучающему органическую химию Число известных веществ в органической химии

    02.03.2022

    http://www.mitht.ru/e-library

    Помогаев А.И.

    Краткий курс органической химии Часть 1

    Теоретические основы органической химии.

    Учебное пособие М., МИТХТ им. М.В.Ломоносова, 2003 – 48 с.

    Издание 2-ое.

    Утверждено Библиотечно-издательской комиссией МИТХТ

    им. М.В. Ломоносова в качестве учебного пособия.

    Данное методическое пособие предназначено для студентов 3 курса направления бакалавриата «Материаловедение и технология новых материалов», изучающих органическую химию в течение одного учебного семестра.

    Пособие представляет собой изложение материала, не выходящего в основном за пределы учебной программы по органической химии для этого направления. В конце каждого раздела приводятся упражнения и типичные задачи, самостоятельное решение которых поможет студенту подготовиться как к контрольным работам, так и к экзамену.

    Подготовлено на кафедре органической химии МИТХТ им. М.В. Ломоносова.

    © Московская Государственная Академия Тонкой Химической Технологии им. М.В. Ломоносова

    http://www.mitht.ru/e-library

    СТРОЕНИЕ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ _____________ 4

    1. Классификация органических соединений____________________________4

    2. Образование связей в органических соединениях______________________5

    3. Свойства ковалентных связей ______________________________________9

    4. Электронные смещения в молекулах органических соединений_________11

    4.1. Индуктивный эффект _____________________________________________11

    4.2. Сопряжение орбиталей: делокализация связей, мезомерный эффект ______14

    5. Изомерия органических соединений________________________________19

    5.1. Структурная изомерия ____________________________________________19

    5.2. Стереоизомерия__________________________________________________20

    6. Задачи и упражнения_____________________________________________32

    ОСНОВЫ ТЕОРИИ ОРГАНИЧЕСКИХ РЕАКЦИЙ__________ 34

    1. Классификация органических реакций по типу разрыва связи __________34

    1.1. Гомолитические или свободнорадикальные реакции ___________________34

    1.2. Гетеролитические или ионные реакции ______________________________36

    2. Классификация реакций по типу превращения _______________________38

    3. Кислоты и основания в органической химии_________________________39

    3.1. Кислоты и основания Бренстеда ____________________________________39

    3.2. Кислоты и основания Льюиса ______________________________________43

    3.3. Кислотно-основный катализ________________________________________44

    4. Задачи и упражнения_____________________________________________45

    http://www.mitht.ru/e-library

    СТРОЕНИЕ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

    1. Классификация органических соединений

    Органическая химия изучает различные соединения углерода,

    простейшими из которых являются соединения углерода с водородом –

    углеводороды . Все остальные органические вещества могут быть рассмотрены как производные углеводородов , отличающиеся от углеводородов тем, что в них один или более атомов водорода замещены на какие-либо другие атомы или группы атомов (функциональные группы).

    В состав органических соединений кроме атомов углерода и водорода могут входить атомы других элементов (так называемые гетероатомы ). Это,

    прежде всего, атомы галогенов (галогенопроизводные углеводородов),

    кислорода (спирты, фенолы, простые эфиры, альдегиды, кетоны, карбоновые кислоты), азота (амины, нитросоединения), серы (тиолы, сульфокислоты),

    металлов (металлорганические соединения) и многих других элементов.

    В основе классификации органических соединений лежит их структура

    последовательность соединения атомов в молекуле . Для классификации органических соединений производят сначала классификацию углеводородной основы (родоначальной структуры), относя ее к насыщенным углеводородам с открытой цепью или циклическим, насыщенным или ненасыщенным,

    алициклическим или ароматическим. А затем производят отнесение к соответствующим производным углеводородов, рассматривая функциональную группу. Так, например, бутан является насыщенным нециклическим углеводородом (такие углеводороды называются алканами), 1-бутен – ненасыщенным углеводородом нециклического строения, имеющим двойную связь (алкен). Циклобутен представляет собой циклический алкен, а бензол – ароматический углеводород. 2-Бутеналь является ненасыщенным ациклическим

    (т.е. нециклическим) альдегидом, а бензойная кислота – это ароматическая карбоновая кислота.

    http://www.mitht.ru/e-library

    CH3 CH2 CH2 CH3

    CH2 =CHCH2 CH3

    CH3 CH=CHCH=O

    циклобутен

    2-бутеналь

    бензойная

    2. Образование связей в органических соединениях

    Молекула любого органического соединения представляет собой упорядоченную совокупность атомов, связанных преимущественно ковалентной связью. Ионная связь также встречается в органических молекулах, однако, не она определяет строение и химическое поведение подавляющего большинства органических соединений. Органическая химия – это химия ковалентных соединений углерода.

    Ковалентная связь – это связь, которую осуществляют два атома посредством обобществленной пары электронов. Обобществление пары электронов происходит при перекрывании атомных орбиталей двух атомов, при этом совершенно безразлично (для образовавшейся связи), сколько электронов было на каждой из перекрывающихся орбиталей. На обеих орбиталях может быть по одному электрону, или на одной из орбиталей может находиться пара электронов, а на другой – ни одного электрона (в последнем случае говорят о донорно-акцепторном механизме образования ковалентной связи).

    Орбитали, которые атомы элементов 1-го и 2-го периодов предоставляют для образования связей в органических соединениях, могут иметь обычные для атомных орбиталей характеристики, т. е. быть s- или p-орбиталями. Так,

    например, при образовании молекулы хлороводорода атом хлора предоставляет р-орбиталь, а атом водорода – s-орбиталь. На р-орбитали атома хлора может быть один электрон, тогда для образования связи атом водорода также предоставляет один электрон. Или на р-орбитали атома хлора могут находиться два электрона (анион), тогда для образования связи атом водорода должен иметь пустую, или вакантную, орбиталь (протон). В последнем случае ковалентная связь образуется по донорно-акцепторному способу: анион хлора выступает донором электронной пары, а протон – ее акцептором. Ниже

    http://www.mitht.ru/e-library

    представлены две схемы образования молекулярных орбиталей (связывающей и антисвязывающей, или разрыхляющей) при взаимодействии (перекрывании)

    атомных орбиталей.

    Для атома углерода, как и для атомов других элементов второго периода,

    которые могут образовывать как простые (одинарные) связи, так и двойные или тройные связи, характерна так называемая гибридизация атомных орбиталей,

    когда атомные орбитали разной энергии (s- и p-орбитали) выравнивают свои энергии, образуя так называемые вырожденные орбитали, т.е. орбитали,

    имеющие одинаковую энергию.

    Атом углерода имеет на внешнем энергетическом уровне четыре электрона. Два валентных электрона располагаются на s-орбитали, на двух р-

    орбиталях имеется по одному электрону, а третья р-орбиталь пуста. При образовании связей атом углерода возбуждается, и один из s-электронов переходит на вакантную р-орбиталь.

    возбуждение

    s рх ру рz

    Возбужденный атом углерода с электронной конфигурацией 2s2p3 может образовать максимально четыре ковалентные связи. При этом связи могут быть образованы с различным количеством атомов – с четырьмя, тремя или двумя.

    В первом случае, когда атом углерода образует связи с четырьмя соседними атомами, т.е. является четырехкоординационным , происходит гибридизация всех четырех орбиталей с образованием четырех вырожденных орбиталей, отличающихся от исходных орбиталей и по энергии, и по форме.

    http://www.mitht.ru/e-library

    Этот процесс по участвующим в процессе орбиталям называют sp 3 -

    гибридизацией , а образующиеся при этом орбитали – sp3 -гибридными орбиталями. В пространстве эти гибридные орбитали лежат на осях,

    максимально удаленных друг от друга и расположенных в силу этого под углом

    109,5О друг к другу (как отрезки, соединяющие центр тетраэдра с его вершинами). Поэтому атом углерода в sp3 -гибридизации называют еще

    тетраэдрическим.

    109,5o

    Когда же атом углерода образует связи с тремя соседними атомами, т.е.

    является трехкоординационным , происходит выравнивание энергий трех орбиталей – одной s- и двух р-орбиталей с образованием трех вырожденных sр 2 -гибридные орбитали, оси которых лежат в одной плоскости под углом 120О

    друг к другу. Не участвующая в гибридизации р-орбиталь располагается перпендикулярно упомянутой плоскости.

    120o

    sр2

    В третьем случае, когда атом углерода является двухкоординационным и

    связан лишь с двумя соседними атомами, реализуется sр-гибридизация . Две вырожденные sр-орбитали располагаются под углом 180О друг к другу, т.е. на одной оси координат, а две негибридные р-орбитали находятся на двух других

    осях координат.

    http://www.mitht.ru/e-library

    Образование связей атома углерода происходит при перекрывании его гибридных орбиталей с соответствующими гибридными или негибридными орбиталями других атомов. При этом могут реализовываться два принципиально различных способа перекрывания орбиталей.

    А) Осевое перекрывание орбиталей, при котором максимум перекрывания находится на оси, проходящей через ядра связывающихся атомов, приводит к образованию σ-связи . Электронная плотность этой связи заключена между ядрами связанных атомов. Она симметрична относительно оси перекрывания. σ-Связь может быть образована перекрыванием любых атомных орбиталей. Атомы водорода и хлора в молекуле хлороводорода связаны σ-связью, образованной в результате осевого перекрывания s-орбитали атома водорода и р-орбитали атома хлора. В молекуле метана все четыре связи между атомом углерода и атомами водорода являются также σ-связями, каждая из которых образована перекрыванием одной из четырех sp 3 -гибридных орбиталей атома углерода с s-орбиталью атома водорода.

    Перекрывание атомных орбиталей при образовании σ-связей в молекулах хлороводорода (а) и метана (б)

    Б) Боковое перекрывание орбиталей – это перекрывание двух р-

    орбиталей, расположенных на взаимно параллельных осях. Образующаяся при таком перекрывании π-связь характеризуется тем, что максимум перекрывания не находится на оси, проходящей через ядра связанных атомов. π-Связь образуют р-орбитали sр2 - или sр-гибридизованных атомов.

    Так, например, в молекуле этилена (СН2 =СН2 ) три sр2 -гибридных орбитали каждого атома углерода при осевом перекрывании с двумя s-

    орбиталями атомов водорода и одной sр2 -орбиталью соседнего атома углерода

    http://www.mitht.ru/e-library

    образуют три σ-связи. Негибридные р-орбитали атомов углерода перекрываются «боками» и образуют π-связь. При этом все пять σ-связей расположены в одной плоскости, а плоскость симметрии π-связи перпендикулярна ей.

    В молекуле ацетилена тройная углерод-углеродная связь представляет собой комбинацию σ-связи и двух π-связей. Последние образуются боковым перекрыванием негибридных р-орбиталей во взаимно перпендикулярных

    плоскостях.

    Образование π-связей в молекулах этилена (а) и ацетилена (б)

    3. Свойства ковалентных связей

    Ковалентная связь характеризуется следующими параметрами:

     Длина связи определяется как расстояние между связанными атомами. Длина связи зависит от радиусов связанных атомов, от типа гибридизации атомов,

    а также от кратности связи (табл. 1).

    Таблица 1

    Длина связи, Å

    Длина связи, Å

     Энергия связи определяется как энергия образования или диссоциации связи и зависит от природы связанных атомов, от длины связи, а также от ее

    http://www.mitht.ru/e-library

    кратности (табл. 2). Следует отметить, что энергия двойной С-С-связи не представляет собой удвоенную энергию простой, поскольку боковое перекрывание орбиталей менее эффективно, чем осевое, и, следовательно, π-

    связь менее прочная, чем σ-связь.

    Таблица 2

    Тип связи

    Энергия связи,

    Тип связи

    Энергия связи,

    ккал/моль

    ккал/моль

    Полярность связи определяется разностью электроотрицательностей связанных атомов. Электроотрицательность атома – это его способность притягивать валентные электроны. Если электроотрицательности связанных атомов одинаковы, электронная плотность связи равномерно распределена между атомами. Во всех остальных случаях электронная плотность связи смещена в ту или иную сторону в зависимости от того, к какому из атомов она притягивается сильнее. На более электроотрицательном атоме возникает при этом так называемый частичный отрицательный заряд, а на менее электроотрицательном атоме – частичный положительный заряд. Для двухатомных молекул полярность связи может быть очень просто охарактеризована дипольным моментом молекулы, который может быть измерен. Обычно полярность простой связи изображают стрелкой вдоль связи, направленной к более электроотрицательному атому. Полярность кратных связей изображают изогнутой стрелкой, направленной от связи к более электроотрицательному атому. Ниже приведены примеры

    СИБИРСКИЙ ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ

    СПРАВОЧНИК СТУДЕНТА

    по ОРГАНИЧЕСКОЙ ХИМИИ

    для специальностей технического и экономического профилей

    Составила: преподаватель

    2012

    Структура « СПРАВОЧНИКА СТУДЕНТА по ОРГАНИЧЕСКОЙ ХИМИИ»

    ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

    СС по органической химии составлен для оказания помощи обучающимся в создании научной картины мира через химическое содержание с учетом межпредметных и внутрипредметных связей, логики учебного процесса.

    В СС по органической химии представлено минимальное по объему, но функционально полное содержание для освоения государственного стандарта химического образования.

    СС по органической химии выполняет две основные функции:

    I. Информационная функция позволяет участникам образовательного процесса получить представление о содержании, структуре предмета, взаимосвязи понятий посредствам схем, таблиц и алгоритмов.

    II. Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, и создаёт представления о содержательном наполнении промежуточной и итоговой аттестации.

    СС предполагает формирование системы знаний, умений и способов деятельности, развивает способность студентов работать со справочными материалами.

    Наименование

    Наименование

    Хронологическая таблица «Развитие органической химии».

    Химические свойства алкенов (этиленовых углеводородов).

    Основные положения теории строения органических соединений

    Химические свойства алкинов (ацетиленовых углеводородов).

    Изомеры и гомологи.

    Химические свойства аренов (ароматических углеводородов).

    Значение ТСОС

    Классификация углеводородов.

    Генетическая связь органических веществ.

    Гомологический ряд

    АЛКАНЫ (ПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ).

    Взаимосвязь

    «Строение - свойства - применение».

    Гомологический ряд

    РАДИКАЛЫОБРАЗОВАН-НЫЕ ОТ АЛКАНОВ.

    Относительные молекулярные массы органических веществ

    Словарь терминов по органической химии. Именные реакции.

    Изомерия классов органических веществ.

    Алгоритм решения задач.

    Физические величины для решения задач.

    Химические свойства алканов (предельных углеводородов).

    Вывод формул соединений.

    Примеры решения задач.

    ХРОНОЛОГИЧЕСКАЯ ТАБЛИЦА «РАЗВИТИЕ ОРГАНИЧЕСКОЙ ХИМИИ»


    Период/год. Кто?

    Характер открытия

    Древней-ший

    Древний человек

    Варить пищу, дубить кожи, изготавливать лекарства

    Парацельс и др.

    Изготовление более сложных по составу лекарств, изучение свойств веществ орг. происхождения, т. е. продуктов жизнедеятельности

    XY-XYIII в. в.

    Непрерывный процесс

    Накопление знаний о различных веществах.

    Главенство «ВИТАЛИСТИЧЕСКИХ ПРЕДСТАВЛЕНИЙ»

    Взрыв научной мысли, детонатором которой служили потребности людей в красителях, одежде, пище.

    Йёнс Якоб Берцелиус (шведский химик)

    Термин «органическая химия»

    Фридрих Вёлер (нем.)

    Синтез щавелевой кислоты

    Понятие

    Органическая химия – это раздел химической науки, изучающая соединения углерода.

    Фридрих Вёлер (нем.)

    Синтез мочевины

    Синтез анилина

    Адольф Кульбе (нем.)

    Синтез уксусной кислоты из углерода

    Э. Франкланд

    Понятие «соединительная система» - валентность

    Пьер Бертло (фр.)

    Синтезировал этиловый спирт гидратацией этилена.

    Синтез жиров.

    «Химия не нуждается в жизненной силе!»

    Синтез сахаристого вещества

    Основываясь на различные теории (Франкланда, Жерара, Кекуле, Купера) создал ТСОС

    Учебник «Введение в полное изучение органической химии». Органическая химия – это раздел химии, изучающий углеводороды и их производные .

    ОСНОВНЫЕ ПОЛОЖЕНИЯ

    ТЕОРИИ СТРОЕНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

    А. М. БУТЛЕРОВА

    1. А. в М. соединены в определённой последовательности, согласно их валентности.

    2. Свойства веществ зависят не только от качественного и количественного состава, но и от химического строения. Изомеры. Изомерия.

    3. А. и группы А. взаимно влияют друг на друга.

    4. По свойствам вещества можно определить строение, а по строению – свойства.

    Изомеры и гомологи.

    Качественный состав

    Количествен­ный состав

    Химическое строение

    Химические свойства

    Изомеры

    одинаковый

    одинаковый

    различное

    различные

    Гомологи

    одинаковый

    различный

    сходное

    сходные

    Значение ТСОС

    1. Объяснила строение М. известных веществ и их свойства.

    2. Дала возможность предвидеть существование неизвестных веществ и найти пути их синтеза.

    3. Объяснить многообразие органических веществ.

    Классификация углеводородов.

    https://pandia.ru/text/78/431/images/image003_147.gif" width="708" height="984 src=">

    Гомологический ряд

    АЛКАНЫ (ПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ)

    Формула

    Название

    МЕТАН

    С2Н6

    ЭТАН

    С3Н8

    ПРОПАН

    БУТАН

    ПЕНТАН

    ГЕКСАН

    ГЕПТАН

    ОКТАН

    НОНАН

    С10Н22

    ДЕКАН

    Гомологический ряд

    РАДИКАЛЫОБРАЗОВАННЫХ ОТ АЛКАНОВ

    Формула

    Название

    МЕТИЛ

    С2Н5

    ЭТИЛ

    С3Н7

    ПРОПИЛ

    БУТИЛ

    ПЕНТИЛ

    ГЕКСИЛ

    ГЕПТИЛ

    ОКТИЛ

    НОНИЛ

    С10Н21

    ДЕЦИЛ

    Общие сведения об углеводородах.

    DIV_ADBLOCK31">


    Химические свойства алканов

    (предельных углеводородов).

    https://pandia.ru/text/78/431/images/image007_73.gif" width="610" height="835 src=">

    Химические свойства алкинов

    (ацетиленовых углеводородов).

    https://pandia.ru/text/78/431/images/image009_68.gif" width="646" height="927 src=">

    Генетическая связь между углеводородами.

    https://pandia.ru/text/78/431/images/image011_36.jpg" width="696" height="919 src=">


    Взаимосвязь «Строение - свойства - применение».

    Способы

    получения

    Строение

    Состав

    Нахождение

    в природе

    Свойства

    Применение

    МОЛЕКУЛЯРНЫЕ МАССЫ НЕКОТЫРЫХ ОРГАНИЧЕСКИХВЕЩЕСТВ.

    Название

    Алканы

    Галоген производные

    Спирты и Фенолы

    Простые эфиры

    Альдегиды

    Карбоновые кислоты

    Нитросоединения


    Алгоритм решения задач

    1. Изучите внимательно условия задачи: определите, с какими величинами предстоит проводить вычисления, обозначьте их буквами, установите единицы их измерения, числовые значения, определите, какая величина является искомой.

    2. Запишите данные задачи в виде кратких условий.

    3. Если в условиях задачи идет речь о взаимодействии веществ, запишите уравнение реакции (реакций) и уравняйте его (их) коэффициентами.

    4. Выясните количественные соотношения между данными задачи и искомой величиной. Для этого расчлените свои действия на этапы, начав с вопроса задачи, выяснения закономерности, с помощью которой можно определить искомую величину на последнем этапе вычислений. Если в исходных данных не хватает каких-либо величин, подумайте, как их можно вычислить, т. е. определите предварительные этапы расчета. Этих этапов может быть несколько.

    5. Определите последовательность всех этапов решения задачи, запишите необходимые формулы расчетов.

    6. Подставьте соответствующие числовые значения величин, проверьте их размерности, произведите вычисления.


    Вывод формул соединений.

    Этот вид расчетов чрезвычайно важен для химической практики, т. к. позволяет на основании экспериментальных данных определить формулу вещества (простейшую и молекулярную).

    На основании данных качественного и количественного анализов химик находит сначала соотношение атомов в молекуле (или другой структурной единице вещества), т. е. его простейшую формулу.
    Например, анализ показал, что вещество является углеводородом
    CxHy, в котором массовые доли углерода и водорода соответственно равны 0,8 и 0,2 (80% и 20%). Чтобы определить соотношение атомов элементов, достаточно определить их количества вещества (число молей): Целые числа (1 и 3) получены делением числа 0,2 на число 0,0666. Число 0,0666 примем за 1. Число 0,2 в 3 раза больше, чем число 0,0666. Таким образом, CH3 является простейшей формулой данного вещества. Соотношению атомов C и H, равному 1:3, соответствует бесчисленное количество формул: C2H6, C3H9, C4H12 и т. д., но из этого ряда только одна формула является молекулярной для данного вещества, т. е. отражающей истинное количество атомов в его молекуле. Чтобы вычислить молекулярную формулу, кроме количественного состава вещества, необходимо знать его молекулярную массу.

    Для определения этой величины часто используется значение относительной плотности газа D. Так, для вышеприведенного случая DH2 = 15. Тогда M(CxHy) = 15µM(H2) = 152 г/моль = 30 г/моль.
    Поскольку M(CH3) = 15, то для соответствия с истинной молекулярной массой необходимо удвоить индексы в формуле. Следовательно, молекулярная формула вещества: C2H6 .

    Определение формулы вещества зависит от точности математических вычислений.

    При нахождении значения n элемента следует учитывать хотя бы два знака после запятой и аккуратно производить округление чисел.

    Например, 0,8878 ≈ 0,89, но не 1. Соотношение атомов в молекуле не всегда определяется простым делением полученных чисел на меньшее число.

    по массовым долям элементов.

    Задача 1. Установите формулу вещества, которое состоит из углерода (w=25%) и алюминия (w=75%).

    Разделим 2,08 на 2. Полученное число 1,04 не укладывается целое число раз в числе 2,78 (2,78:1,04=2,67:1).

    Теперь разделим 2,08 на 3.

    При этом получается число 0,69, которое укладывается ровно 4 раза в числе 2,78 и 3 раза в числе 2,08.

    Следовательно, индексы x и y в формуле вещества AlxCy равны 4 и 3, соответственно.

    Ответ: Al4C3 (карбид алюминия).

    Алгоритм нахождения химической формулы вещества

    по его плотности и массовым долям элементов.

    Более сложным вариантом задач на вывод формул соединений является случай, когда состав вещества задается через продукты сгорания этих.

    Задача 2. При сжигании углеводорода массой 8,316 г образовалось 26,4 г CO2. Плотность вещества при нормальных условиях равна 1,875 г/мл. Найдите его молекулярную формулу.

    Общие сведения об углеводородах.

    (продолжение)

    https://pandia.ru/text/78/431/images/image025_32.gif" width="696" height="983">

    Природные источники углеводородов.

    Нефть – ископаемое, жидкое горючее, сложная смесь органических веществ: предельных углеводородов, парафинов, нафтенов, ароматических и др. В состав нефти обычно входят кислород-, серо - и азотсодержащие вещества.

    Маслянистая жидкость с характерным запахом, темного цвета, легче воды. Важнейший источник топлива, смазочных масел и др. нефтепродуктов. Основной (первичный) процесс переработки - перегонка, в результате которой получают бензин, лигроин, керосин, соляровые масла, мазут, вазелин , парафин, гудрон. Вторичные процессы переработки (крекинг, пиролиз ) позволяют получать дополнительное жидкое топливо, ароматические углеводороды (бензол, толуол и пр.) и др.

    Нефтяные газы – смесь различных газообразных углеводородов, растворенных в нефти; они выделяются в процессе добычи и переработки. Применяются как топливо и химическое сырье.

    Бензин – бесцветная или желтоватая жидкость, состоит из смеси углеводородов (С5 – С11 ). Применяется как моторное топливо, растворитель и др.

    Лигроин – прозрачная желтоватая жидкость, смесь жидких углеводородов. Применяется как дизельное горючее, растворитель, гидравлическая жидкость и др.

    Керосин – прозрачная, бесцветная или желтоватая жидкость с голубым отливом. Применяют как топливо для реактивных двигателей, для бытовых нужд и др.

    Соляр – желтоватая жидкость. Применяется для производства смазочных масел.

    Мазут – тяжелое нефтяное топливо, смесь парафинов. Применяют в производстве масел, топочных мазутов, битума , для переработки на легкое моторное топливо.

    Бензол – бесцветная подвижная жидкость с характерным запахом. Применяют для синтеза органических соединений, как сырье для получения пластмасс, как растворитель, для производства взрывчатых веществ, в анилинокрасочной промышленности

    Толуол – аналог бензола. Применяют в производстве капролактама, ВВ, бензойной кислоты, сахарина, как растворитель, в анилинокрасочной промышленности и др.

    Смазочные масла – Применяют в различных областях техники для уменьшения трения мех. частей, для защиты металлов от коррозии, как смазочноохлаждающую жидкость.

    Гудрон – черная смолистая масса. Применяется для смазки и др.

    Вазелин – смесь минерального масла и парафинов. Применяют в электротехнике , для смазки подшипников, для защиты металлов от коррозии и др.

    Парафин – смесь твердых насыщенных углеводородов. Применяют как электроизолятор, в хим. промышленности - для получения высших кислот и спиртов и др.

    Пластмасса – материалы на основе высокомолекулярных соединении. Применяют для производства различных технических изделий и предметов быта.

    Асфальтовая руда – смесь окисленных углеводородов. Применяется для изготовления лаков, в электротехнике, для асфальтирования улиц.

    Горный воск – минерал из группы нефтяных битумов. Применяют как электроизолятор, для приготовления различных смазок и мазей и др.

    Искусственный воск – очищенный горный воск.

    Каменный уголь – твердое горючее ископаемое растительного происхождения черного или черно-серого цвета. Содержит 75–97% углерода. Применяют как топливо и как сырье для химической промышленности .

    Кокс – спекшийся твердый продукт, образующийся при нагревании некоторых углей в коксовых печах до 900–1050° С. Применяется в доменных печах.

    Коксовый газ – газообразные продукты коксования ископаемых углей. Состоит из СН4, Н2, СО и др., содержит также негорючие примеси. Используется как высококалорийное топливо.

    Аммиачная вода – жидкий продукт сухой перегонки каменного угля. Применяется для получения солей аммония (азотные удобрения), нашатырного спирта и др.

    Смола каменноугольная – густая темная жидкость с характерным запахом, продукт сухой перегонки каменного угля. Применяется как сырье для хим. промышленности.

    Бензол – бесцветная подвижная жидкость с характерным запахом, один из продуктов каменноугольной смолы. Применяют для синтеза органических соединений, как ВВ, как сырье для получения пластмасс, как краситель, как растворитель и др.

    Нафталин – твердое кристаллическое вещество с характерным запахом, один из продуктов каменноугольной смолы. Производные нафталина применяют для получения красителей и взрывчатых веществ и др.

    Лекарства - коксохимическая промышленность дает целый ряд лекарственных препаратов (карболовая кислота, фенацитин, салициловая кислота, сахарин и др.).

    Пек – твердая (вязкая) масса черного цвета, остаток от перегонки каменноугольной смолы. Применяют как гидроизолятор, для производства топливных брикетов и др.

    Толуол – аналог бензола, один из продуктов каменноугольной смолы. Применяют для производства ВВ, капролактама, бензойной кислоты, сахарина, как краситель и др.

    Красители – одни из продуктов коксохимического производства, получаются в результате переработки бензола, нафталина и фенола. Применяют в народном хозяйстве.

    Анилин – бесцветная маслянистая жидкость, ядовит. Применяется для получения различных органических веществ, анилиновых красок, различных азокрасителей, синтеза лекаре венных препаратов и др.

    Сахарин – твердое белое кристаллическое вещество сладкого вкуса, получается из толуола. Применяется вместо сахара при заболевании диабетом и др.

    ВВ – производные каменного угля, получаемые в процессе сухой перегонки. Применяются в военной промышленности, горном деле и других отраслях народного хозяйства.

    Фенол – кристаллическое вещество белого или розового цвета с характерным сильным запахом. Применяется в производстве фенолформальдегидных пластмасс, синтетического волокна капрона, красителей, лекарственных препаратов и др.

    Пластмасса – материалы на основе высокомолекулярных соединений. Применяют для производства различных технических изделий и предметов быта.

    Если вы поступили в университет, но к этому времени так и не разобрались в этой нелегкой науке, мы готовы раскрыть вам несколько секретов и помочь изучить органическую химию с нуля (для "чайников"). Вам же остается только читать и внимать.

    Основы органической химии

    Органическая химия выделена в отдельный подвид благодаря тому, что объектом ее изучения является все, в составе чего есть углерод.

    Органическая химия – раздел химии, который занимается изучением соединения углерода, структуру таких соединений, их свойства и методы соединения.

    Как оказалось, углерод чаще всего образует соединения со следующими элементами - H, N, O, S, P. Кстати, эти элементы называются органогенами .

    Органические соединения, количество которых сегодня достигает 20 млн, очень важны для полноценного существования всех живых организмов. Впрочем, никто и не сомневался, иначе человек просто закинул бы изучение этого непознанного в долгий ящик.

    Цели, методы и теоретические представления органической химии представлены следующим:

    • Разделение ископаемого, животного или растительного сырья на отдельные вещества;
    • Очистка и синтез разных соединений;
    • Выявление структуры веществ;
    • Определение механики протекания химических реакций;
    • Нахождение зависимости между структурой и свойствами органических веществ.

    Немного из истории органической химии

    Вы можете не верить, но еще в далекой древности жители Рима и Египта понимали кое-что в химии.

    Как мы знаем, они пользовались натуральными красителями. А нередко им приходилось использовать не готовый естественный краситель, а добывать его, вычленяя из цельного растения (например, содержащиеся в растениях ализарин и индиго).

    Можем вспомнить и культуру употребления алкоголя. Секреты производства спиртных напитков известны в каждом народе. Причем многие древние народы знали рецепты приготовления «горячей воды» из крахмал- и сахарсодержащих продуктов.

    Так продолжалось долгие, долгие годы, и только в 16-17 веках начались какие-то изменения, небольшие открытия.

    В 18 веке некто Шееле научился выделять яблочную, винную, щавелевую, молочную, галловую и лимонную кислоту.

    Тогда всем стало ясно, что продукты, которые удалось выделить из растительного или животного сырья, имели много общих черт. В то же время они сильно отличались от неорганических соединений. Поэтому служителям науки нужно было срочно выделить их в отдельный класс, так и появился термин «органическая химия».

    Несмотря на то, что сама органическая химия как наука появилась лишь в 1828 году (именно тогда господину Вёлеру удалось выделить мочевину путем упаривания цианата аммония), в 1807 году Берцелиус ввел первый термин в номенклатуру в органической химии для чайников:

    Раздел химии, который изучает вещества, полученные из организмов.

    Следующий важный шаг в развитии органический химии – теория валентности, предложенная в 1857 году Кекуле и Купером, и теория химического строения господина Бутлерова от 1861 года. Уже тогда ученые стали обнаруживать, что углерод – четырехвалентен и способен образовывать цепи.

    В общем, с эти самых пор наука регулярно испытывала потрясения и волнения благодаря новым теориям, открытиям цепочкам и соединениям, что позволяло так же активно развиваться органической химии.

    Сама наука появилась благодаря тому, что научно-технический прогресс не в состоянии был стоять на месте. Он продолжал и продолжал шагать, требуя новых решений. И когда каменноугольной смолы в сфере промышленности перестало хватать, людям просто пришлось создать новый органический синтез, который со временем перерос в открытие невероятно важного вещества, которое и по сей день дороже золота – нефть. Кстати, именно благодаря органической химии на свет появилась ее «дочка» - поднаука, которая получила название «нефтехимия».

    Но это уже совсем другая история, которую вы можете изучить сами. Далее мы предлагаем вам посмотреть научно-популярное видео про органическую химию для чайников:

    Ну а если вам некогда и срочно нужна помощь профессионалов , вы всегда знаете, где их найти.

    – раздел химической науки, изучающий углеводороды – вещества, содержащие углерод и водород, а также различные производные этих соединений, включающие атомы кислорода, азота и галогенов. Все такие соединения называют органическими.

    Органическая химия возникла в процессе изучения тех веществ, которые добывались из растительных и животных организмов, состоящих в основной своей массе из органических соединений. Именно это определило чисто историческое название таких соединений (организм – органический). Некоторые технологии органической химии возникли еще в глубокой древности, например, спиртовое и уксуснокислое брожение, использование органических красителей индиго и ализарина, процессы дубления кожи и др. В течение долгого времени химики умели лишь выделять и анализировать органические соединения, но не могли получать их искусственно, в результате чего возникло убеждение, что органические соединения могут быть получены только с помощью живых организмов. Начиная со второй половины 19 в. методы органического синтеза стали интенсивно развиваться, что позволило постепенно преодолеть устоявшееся заблуждение. Впервые синтез органических соединений в лаборатории удалось осуществить Ф.Велеру ne(в период 1824–1828), при гидролизе дициана он получил щавелевую кислоту, выделяемую до этого из растений, а при нагревании циановокислого аммония за счет перестройки молекулы (см . ИЗОМЕРИЯ) получил мочевину – продукт жизнедеятельности живых организмов (рис. 1).

    Рис. 1. ПЕРВЫЕ СИНТЕЗЫ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

    Сейчас многие из соединений, присутствующих в живых организмах, можно получить в лаборатории, кроме того, химики постоянно получают органические соединения, не встречающиеся в живой природе.

    Становление органической химии как самостоятельной науки произошло в середине 19 в., когда благодаря усилиям ученых-химиков, стали формироваться представления о строении органических соединений. Наиболее заметную роль сыграли работы Э.Франкланда (определил понятие валентности), Ф.Кекуле (установил четырехвалентность углерода и строение бензола), А. Купера (предложил используемый и поныне символ валентной черты, соединяющей атомы при изображении структурных формул),А.М.Бутлерова (создал теорию химического строения, в основе которой лежит положение, согласно которому свойства соединения определяются не только его составом, но и тем, в каком порядке соединены атомы).

    Следующий важный этап в развитии органической химии связан с работами Я.Вант-Гоффа , который изменил сам способ мышления химиков, предложив перейти от плоского изображения структурных формул к пространственному расположению атомов в молекуле, в итоге химики стали рассматривать молекулы как объемные тела.

    Представления о природе химической связи в органических соединениях впервые сформулировал Г.Льюис , предположивший, что атомы в молекуле связаны с помощью электронов: пара обобщенных электронов создает простую связь, а две или три пары образуют, соответственно, двойную и тройную связь. Рассматривая распределение электронной плотности в молекулах (например, ее смещение под влиянием электроотрицательных атомов O, Cl и др.) химики смогли объяснить реакционную способность многих соединений, т.е. возможность их участия в тех или иных реакциях.

    Учет свойств электрона, определяемых квантовой механикой, привел к развитию квантовой химии, использующей представления о молекулярных орбиталях . Сейчас квантовая химия, показавшая на многих примерах свою предсказательную силу, успешно сотрудничает с экспериментальной органической химией.

    Небольшую группу соединений углерода не относят к органическим: угольная кислота и ее соли (карбонаты), цианистоводородная кислота HCN и ее соли (цианиды), карбиды металлов и некоторые другие соединения углерода, которые изучает неорганическая химия.

    Главная особенность органической химии – исключительное разнообразие соединений, которое возникло из-за способности атомов углерода соединяться друг с другом в практически неограниченном количестве, образуя молекулы в виде цепочек и циклов. Еще большее разнообразие достигается за счет включения между атомами углерода атомов кислорода, азота и др. Явление изомерии , благодаря которому молекулы, обладающие одинаковым составом, могут иметь различное строение, дополнительно увеличивает многообразие органических соединений. Сейчас известно свыше 10 млн. органических соединений, причем их количество ежегодно увеличивается на 200–300 тысяч.

    Классификация органических соединений. В качестве основы при классификации приняты углеводороды, их считают базовыми соединениями в органической химии. Все остальные органические соединения рассматривают как их производные.

    При систематизации углеводородов принимают во внимание строение углеродного скелета и тип связей, соединяющих атомы углерода.

    I. АЛИФАТИЧЕСКИЕ (aleiphatos. греч. масло) углеводороды представляют собой линейные или разветвленные цепочки и не содержат циклических фрагментов, они образуют две крупные группы.

    1. Предельные или насыщенные углеводороды (названы так потому, что не способны что-либо присоединять) представляют собой цепочки атомов углерода, соединенных простыми связями и окруженных атомами водорода (рис. 1). В том случае, когда цепочка имеет разветвления, к названию добавляют приставку изо . Простейший насыщенный углеводород – метан, с него начинается ряд этих соединений.

    Рис. 2. НАСЫЩЕННЫЕ УГЛЕВОДОРОДЫ

    Основные источники насыщенных углеводородов – нефть и природный газ. Реакционная способность насыщенных углеводородов очень низкая, они могут реагировать только с наиболее агрессивными веществами, например, с галогенами или с азотной кислотой. При нагревании насыщенных углеводородов выше 450 С° без доступа воздуха разрываются связи С-С и образуются соединения с укороченной углеродной цепью. Высокотемпературное воздействие в присутствии кислорода приводит к их полному сгоранию до СО 2 и воды, что позволяет эффективно использовать их в качестве газообразного (метан – пропан) или жидкого моторного топлива (октан).

    При замещении одного или нескольких атомов водорода какой-либо функциональной (т.е. способной к последующим превращениям) группой образуются соответствующие производные углеводородов. Соединения, содержащие группировку С-ОН, называют спиртами, НС=О – альдегидами, СООН – карбоновыми кислотами (слово «карбоновая» добавляют для того, чтобы отличить их от обычных минеральных кислот, например, соляной или серной). Соединение может содержать одновременно различные функциональные группы, например, СООН и NH 2 , такие соединения называют аминокислотами. Введение в состав углеводорода галогенов или нитрогрупп приводит соответственно к галоген- или нитропроизводным (рис. 3).


    Рис. 4. ПРИМЕРЫ НАСЫЩЕННЫХ УГЛЕВОДОРОДОВ с функциональными группами

    Все показанные производные углеводородов образуют крупные группы органических соединений: спирты, альдегиды, кислоты, галогенпроизводные и т.д. Поскольку углеводородная часть молекулы имеет очень низкую реакционную способность, химическое поведение таких соединений определяется химическими свойствами функциональных групп –ОН, -СООН, -Cl, -NO 2 и др..

    2. Ненасыщенные углеводороды имеют те же варианты строения основной цепи, что и насыщенные, но содержат двойные или тройные связи между атомами углерода (рис. 6). Простейший ненасыщенный углеводород – этилен.

    Рис. 6. НЕНАСЫЩЕННЫЕ УГЛЕВОДОРОДЫ

    Наиболее характерно для ненасыщенных углеводородов присоединение по кратной связи (рис. 8), что позволяет синтезировать на их основе разнообразные органические соединения.

    Рис. 8. ПРИСОЕДИНЕНИЕ РЕАГЕНТОВ к ненасыщенным соединениям по кратной связи

    Другое важное свойство соединений с двойными связями - их способность полимеризоваться (рис. 9.), двойные связи при этом раскрываются, в результате образуются длинные углеводородные цепи.


    Рис. 9. ПОЛИМЕРИЗАЦИЯ ЭТИЛЕНА

    Введение в состав ненасыщенных углеводородов упомянутых ранее функциональных групп так же, как и в случае насыщенных углеводородов, приводит к соответствующим производным, которые также образуют крупные группы соответствующих органических соединений – ненасыщенные спирты, альдегиды и т.д. (рис. 10).

    Рис. 10. НЕНАСЫЩЕННЫЕ УГЛЕВОДОРОДЫ с функциональными группами

    Для показанных соединений приведены упрощенные названия, точное положение в молекуле кратных связей и функциональных групп указывают в названии соединения, которое составляют по специально разработанным правилам.

    Химическое поведение таких соединений определяется как свойствами кратных связей, так и свойствами функциональных групп.

    II. КАРБОЦИКЛИЧЕСКИЕ УГЛЕВОДОРОДЫ содержат циклические фрагменты, образованные только атомами углерода. Они образуют две крупные группы.

    1. Алициклические (т.е. и алифатические и циклические одновременно) углеводороды. В этих соединениях циклические фрагменты могут содержать как простые, так и кратные связи, кроме того, соединения могут содержать несколько циклических фрагментов, к названию этих соединений добавляют приставку «цикло», простейшее алициклическое соединение – циклопропан (рис. 12).


    Рис. 12. АЛИЦИКЛИЧЕСКИЕ УГЛЕВОДОРОДЫ

    Помимо показанных выше существуют иные варианты соединения циклических фрагментов, например, они могут иметь один общий атом, (так называемые, спироциклические соединения), либо соединяться таким образом, чтобы два или более атомов были общими для обоих циклов (бициклические соединения), при объединении трех и более циклов возможно также образование углеводородных каркасов (рис. 14).


    Рис. 14. ВАРИАНТЫ СОЕДИНЕНИЯ ЦИКЛОВ в алициклических соединениях: спироциклы, бициклы и каркасы. В названии спиро- и бициклических соединений указывают тот алифатический углеводород, который содержит такое же общее число атомов углерода, например, в показанном на рисунке спироцикле содержится восемь атомов углерода, поэтому его название построено на основе слова «октан». В адамантане атомы расположены так же, как в кристаллической решетке алмаза, что определило его название (греч. adamantos – алмаз)

    Многие моно- и бициклические алициклические углеводороды, а также производные адамантана входят в состав нефти, их обобщенное название – нафтены.

    По химическим свойствам алициклические углеводороды близки соответствующим алифатическим соединениям, однако, у них появляется дополнительное свойство, связанное с их циклическим строением: небольшие циклы (3–6-членные) способны раскрываться, присоединяя некоторые реагенты (рис. 15).


    Рис. 15. РЕАКЦИИ АЛИЦИКЛИЧЕСКИХ УГЛЕВОДОРОДОВ , протекающие с раскрытием цикла

    Введение в состав алициклических углеводородов различных функциональных групп приводит к соответствующим производным – спиртам, кетонам и т.п. (рис. 16).

    Рис. 16. АЛИЦИКЛИЧЕСКИЕ УГЛЕВОДОРОДЫ с функциональными группами

    2. Вторую крупную группу карбоциклических соединений образуют ароматические углеводороды бензольного типа, т.е содержащие в своем составе один или несколько бензольных циклов (существуют также ароматические соединения небензольного типа (см . АРОМАТИЧНОСТЬ ). При этом они могут также содержать фрагменты насыщенных или ненасыщенных углеводородных цепей (рис. 18).


    Рис. 18. АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ .

    Существуют группа соединений, в которых бензольные кольца как бы спаяны между собой, это так называемые конденсированные ароматические соединения (Рис. 20).


    Рис. 20. КОНДЕНСИРОВАННЫЕ АРОМАТИЧЕСКИЕ СОЕДИНЕНИЯ

    Многие ароматические соединения, в том числе и конденсированные (нафталин и его производные) входят в состав нефти, второй источник этих соединений – каменноугольная смола.

    Для бензольных циклов не характерны реакции присоединения, которые проходят с большим трудом и в жестких условиях, наиболее типичны для них реакции замещения атомов водорода (рис.21).

    Рис. 21. РЕАКЦИИ ЗАМЕЩЕНИЯ атомов водорода в ароматическом ядре.

    Помимо функциональных групп (галогена, нитро- и ацетильной группы), присоединенных к бензольному ядру (рис. 21), можно также ввести иные группы, в результате получаются соответствующе производные ароматических соединений (рис. 22), образующие крупные классы органических соединений – фенолы, ароматические амины и др.


    Рис. 22. АРОМАТИЧЕСКИЕ СОЕДИНЕНИЯ с функциональными группами. Соединения, в которых neгруппа -ОН соединена с атомом углерода в ароматическом ядре, называют фенолами, в отличие от алифатических соединений, где такие соединения называют спиртами.

    III. ГЕТЕРОЦИКЛИЧЕСКИЕ УГЛЕВОДОРОДЫ содержат в составе цикла (помимо атомов углерода) различные гетероатомы: O, N, S. Циклы могут быть различного размера, содержать как простые, так и кратные связи, а также присоединенные к гетероциклу углеводородные заместители. Существуют варианты, когда гетероцикл «спаян» с бензольным ядром (рис. 24).

    Рис. 24. ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ . Их названия сложились исторически, например, фуран получил название от фуранового альдегида – фурфурола, получаемого из отрубей (лат. furfur – отруби). Для всех показанных соединений реакции присоединения затруднены, а реакции замещения проходят достаточно легко. Таким образом, это ароматические соединения небензольного типа.

    Разнообразие соединений этого класса увеличивается дополнительно за счет того, что гетероцикл может содержать два и более гетероатомов в цикле (рис. 26).


    Рис. 26. ГЕТЕРОЦИКЛЫ с двумя и более гетероатомами.

    Точно так же, как и рассмотренные ранее алифатические, алициклические и ароматические углеводороды, гетероциклы могут содержать в своем составе различные функциональные группы (-ОН, -СООН, -NH 2 и др.), причем гетероатом в цикле в некоторых случаях также можно рассматривать как функциональную группу, поскольку он способен принимать участие в соответствующих превращениях (рис. 27).


    Рис. 27. ГЕТЕРОАТОМ N в роли функциональной группы. В названии последнего соединения буква «N» указывает, к какому атому присоединена метильная группа.

    Реакции органической химии. В отличие от реакций неорганической химии, где с высокой скоростью (иногда мгновенно) взаимодействуют ионы, в реакциях органических соединений обычно участвуют молекулы, содержащие ковалентные связи. В результате все взаимодействия протекают гораздо медленнее, чем в случае ионных соединений (иногда десятки часов), часто при повышенной температуре и в присутствии ускоряющих процесс веществ – катализаторов. Многие реакции протекают через промежуточные стадии или в нескольких параллельных направлениях, что приводит к заметному снижению выхода нужного соединения. Поэтому при описании реакций вместо уравнений с числовыми коэффициентами (что традиционно принято в неорганической химии) часто используют схемы реакций без указания стехиометрических соотношений.

    Название крупных классов органических реакций часто связывают с химической природой действующего реагента или с типом вводимой в соединение органической группы:

    а) галогенирование – введение атома галогена (рис. 8, первая схема реакции),

    б) гидрохлорирование, т.е. воздействие HCl (рис. 8, вторая схема реакции)

    в) нитрование – введение нитрогруппы NO 2 (рис. 21, второе направление реакции)

    г) металлирование – введение атома металла (рис. 27, первая стадия)

    а) алкилирование – введение алкильной группы (рис. 27, вторая стадия)

    б) ацилирование – введение ацильной группы RC(O)- (рис. 27, вторая стадия)

    Иногда название реакции указывает на особенности перестройки молекулы, например, циклизация – образование цикла, дециклизация – раскрытие цикла (рис.15).

    Крупный класс образуют реакции конденсации (лат . condensatio – уплотнение, сгущение), при которых происходит формирование новых связей С-С с одновременным образованием легко удаляемых неорганических или органических соединений. Конденсацию, сопровождаемую выделением воды, называют дегидратацией. Конденсационные процессы могут также проходить внутримолекулярно, то есть, в пределах одной молекулы (рис. 28).

    Рис. 28. РЕАКЦИИ КОНДЕНСАЦИИ

    В конденсации бензола (рис. 28) роль функциональных групп выполняют фрагменты С-Н.

    Классификация органических реакций не имеет строгого характера, например, показанную на рис. 28 внутримолекулярную конденсацию малеиновой кислоты можно также отнести к реакциям циклизации, а конденсацию бензола – к дегидрированию.

    Существуют внутримолекулярные реакции, несколько отличающиеся от конденсационных процессов, когда фрагмент (молекула) отщепляется в виде легко удаляемого соединения без очевидного участия функциональных групп. Такие реакции называют элиминированием (лат. eliminare – изгонять), при этом образуются новые связи (рис. 29).


    Рис. 29. РЕАКЦИИ ЭЛИМИНИРОВАНИЯ

    Возможны варианты, когда совместно реализуются несколько типов превращений, что показано далее на примере соединения, в котором при нагревании протекают разнотипные процессы. При термической конденсации слизевой кислоты (рис. 30) проходит внутримолекулярная дегидратация и последующее элиминирование СО 2 .


    Рис. 30. ПРЕВРАЩЕНИЕ СЛИЗЕВОЙ КИСЛОТЫ (получаемой из желудевого сиропа) в пирослизевую кислоту, названную так потому, что получают ее нагреванием слизевой. Пирослизевая кислота представляет собой гетероциклическое соединение – фуран с присоединенной функциональной (карбоксильной) группой. В процессе реакции разрываются связи С-О, С-Н и образуются новые связи С-Н и С-С.

    Существуют реакции, при которых происходит перестраивание молекулы без изменения состава (см . ИЗОМЕРИЗАЦИЯ ).

    Методы исследования в органической химии. Современная органическая химия помимо элементного анализа использует многие физические методы исследования. Сложнейшие смеси веществ разделяют на составляющие компоненты с помощью хроматографии, основанной на перемещении растворов или паров веществ через слой сорбента. Инфракрасная спектроскопия – пропускание инфракрасных (тепловых) лучей через раствор или сквозь тонкий слой вещества – позволяет установить наличие в веществе определенных фрагментов молекулы, например, групп С 6 Н 5 , С=О, NH 2 и др.

    Ультрафиолетовая спектроскопия, называемая также электронной, несет информацию об электронном состоянии молекулы, она чувствительна к присутствию в веществе кратных связей и ароматических фрагментов. Анализ кристаллических веществ с помощью лучей рентгеновского диапазона (рентгеноструктурный анализ) дает объемную картину расположения атомов в молекуле, подобную тем, что показаны на приведенных выше анимированных рисунках, иными словами, позволяет как бы увидеть строение молекулы своими глазами.

    Спектральный метод – ядерный магнитный резонанс, основанный на резонансном взаимодействии магнитных моментов ядер с внешним магнитным полем, дает возможность различить атомы одного элемента, например, водорода, расположенные в различных фрагментах молекулы (в углеводородном скелете, в гидроксильной, карбоксильной или аминогруппе), а также определить их количественное соотношение. Подобный анализ возможен также для ядер С, N, F и др. Все эти современные физические методы привели к интенсивным исследованиям в органической химии – стало возможным быстро решать те задачи, на которые ранее уходили долгие годы.

    Некоторые разделы органической химии выделились в крупные самостоятельные области, например, химия природных веществ, лекарственных препаратов, красителей, химия полимеров. В середине 20 в. химия элементоорганических соединений стала развиваться как самостоятельная дисциплина, которая изучает вещества, содержащие связь С-Э, где символ Э обозначает любой элемент(кроме углерода, водорода, кислорода, азота и галогенов). Велики успехи биохимии, изучающей синтез и превращения органических веществ, происходящие в живых организмах. Развитие всех этих областей основано на общих законах органической химии.

    Современный промышленный органический синтез включат в себя широкий набор различных процессов – это, прежде всего, крупнотоннажные производства – переработка нефти, газа и получение моторных топлив, растворителей, теплоносителей, смазочных масел, кроме того, синтез полимеров, синтетических волокон, разнообразных смол для покрытий, клеев и эмалей. К малотоннажным производствам относят получение лекарственных препаратов, витаминов, красителей, пищевых добавок и душистых веществ.

    Михаил Левицкий

    ЛИТЕРАТУРА Каррер П. Курс органической химии , пер. с нем., ГНТИ Химлит, Л., 1962
    Крам Д., Хэммонд Дж. Органическая химия , пер. с англ., Мир, М., 1964

    Из всего многообразия химических соединений большая часть (свыше четырех миллионов) содержит углерод. Почти все они относятся к органическим веществам. Органические соединения встречаются в природе, например углеводы, белки, витамины, они играют важную роль в жизнедеятельности животных и растений. Многие органическиё вещества и их смеси (пластмассы, каучук, нефть, природный газ и другие) имеют большое значение для развития народного хозяйства страны.

    Химия соединений углерода называется органической химией. Так определил предмет органической химии великий русский химик-органик А.М. Бутлеров. Однако не все соединения углерода принято относить к органическим. Такие простейшие вещества, как оксид углерода (II) СО, диоксид углерода СО2, угольная кислота Н2СО3 и ее соли, например, СаСО3, К2СО3, относят к неорганическим соединениям. В состав органических веществ кроме углерода могут входить и другие элементы. Наиболее часто - это водород, галогены, кислород, азот, сера и фосфор. Существуют также органическиё, вещества, содержащие другие элементы, в том числе металлы.

    2. Строение атома углерода (С), структура его электронной оболочки

    2.1 Значение атома углерода (С) в химическом строении органических соединений

    УГЛЕРОД (лат. Carboneum), С, химический элемент подгруппы IVa периодической системы; атомный номер 6, атомная масса 12,0107, относится к неметаллам. Природный углерод состоит из двух стабильных нук лидов - 12С (98,892% по массе) и 13С (1,108%) и одного нестабильного - С с периодом полураспада 5730 лет.

    Распространённость в природе. На долю углерода приходится 0,48% от массы земной коры, в которой он по содержанию занимает среди других элементов 17-е место. Основные углерод-содержащие породы - природные карбонаты (известняки и доломиты); количество углерода в них составляет около 9,610 т.

    В свободном состоянии углерод встречается в природе в виде горючих ископаемых, а также в виде минералов - алмаза и графита. Около 1013 т углерода сосредоточено в таких горючих ископаемых, как каменный и бурый уголь, торф, сланцы, битумы, образующих мощные скопления в недрах Земли, а также в природных горючих газах. Алмазы чрезвычайно редки. Даже алмазоносные породы (кимберлиты) содержат не более 9-10 % алмазов массой, как правило, не более 0,4 г. Найденным крупным алмазам обычно присваивают особое название. Самый большой алмаз «Куллинан» весом 621,2 г (3106 карат) был найден в Южной Африке (Трансвааль) в 1905 г., а самый большой русский алмаз «Орлов» весом 37,92 г (190 карат) -в Сибири в середине 17 в.

    Чёрно-серый непрозрачный жирный на ощупь с металлическим блеском графит представляет собой скопление плоских полимерных молекул из атомов углерода, непрочно наслоённых друг на друга. При этом атомы внутри слоя связаны между собой сильнее, чем атомы между слоями.

    Другое дело алмаз. В его бесцветном, прозрачном и сильно преломляющем свет кристалле каждый атом углерода связан химическими связями с четырьмя такими же атомами, расположенными в вершинах тетраэдра. Все связи одинаковы по длине и очень прочны. Они образуют в пространстве непрерывный трёхмерный каркас. Весь кристалл алмаза представляет собой как бы одну гигантскую полимерную молекулу, не имеющую «слабых» мест, т.к. прочность всех связей одинакова.

    Плотность алмаза при 20°С равна 3,51 г/см 3 , графита - 2,26 г/см 3 . Физические свойства алмаза (твёрдость, электропроводность, коэффициент термического расширения) практически одинаковы по всем направлениям; он является самым твёрдым из всех найденных в природе веществ. В графите же эти свойства по разным направлениям - перпендикулярному или параллельному слоям атомов углерода - сильно различаются: при небольших боковых усилиях параллельные слои графита сдвигаются друг относительно друга и он расслаивается на отдельные чешуйки, оставляющие след на бумаге. По электрическим свойствам алмаз - диэлектрик, графит же проводит электрический ток.

    Алмаз при нагревании без доступа воздуха выше 1000 °С превращается в графит. Графит при постоянном нагревании в тех же условиях не изменяется вплоть до 3000°С, когда он возгоняется без плавления. Прямой переход графита в алмаз происходит только при температуре выше 3000°С и огромном давлении - около 12 ГПа.

    Третья аллотропная модификация углерода -карбин - получена искусственно. Это мелкокристаллический чёрный порошок; в его структуре длинные цепочки атомов углерода расположены параллельно друг другу. Каждая цепочка имеет строение (-С=С) Л или (=С=С=) Л. Плотность карбина средняя между графитом и алмазом -2,68-3,30 г/см 3 . Одна из важнейших особенностей карбина - его совместимость с тканями человеческого организма, что позволяет применять его, например, при изготовлении не-отторгаемых организмом искусственных кровеносных сосудов (рис. 1).

    Название своё фуллерены получили не в честь химика, а по имени американского архитектора Р. Фуллера, который предложил строить ангары и другие сооружения в виде куполов, поверхность которых образуют пяти- и шестиугольники (такой купол построен, например, московском парке «Сокольники»).

    Для углерода характерно также состояние с неупорядоченной структурой - это т. наз. аморфный углерод (сажа, кокс, древесный уголь) рис. 2. Получение углерода (С):

    Большинство окружающих нас веществ - органические соединения. Это ткани животных и растений, наша пища, лекарства, одежда (хлопчатобумажные, шерстяные и синтетические волокна), топливо (нефть и природный газ), резина и пластмассы, моющие средства. В настоящее время известно более 10 миллионов таких веществ, и число их каждый год значительно возрастает благодаря тому, что учёные выделяют неизвестные вещества из природных объектов и создают новые, не существующие в природе соединения.

    Такое многообразие органических соединений связано с уникальной особенностью атомов углерода образовывать прочные ковалентные связи, как между собой, так и с другими атомами. Атомы углерода, соединяясь друг с другом как простыми, так и кратными связями, могут образовывать цепочки практически любой длины и циклы. Большое разнообразие органических соединений связано также с существованием явления изомерии.

    Почти все органические соединения содержат также водород, часто в их состав входят атомы кислорода, азота, реже - серы, фосфора, галогенов. Соединения, содержащие атомы любых элементов (за исключением О, N, S и галогенов), непосредственно связанные с углеродом, объединены под названием элементоорганические соединения; основную группу таких соединений составляют металлоорганические соединения (рис. 3).



    Огромное число органических соединений требует их четкой классификации. Основу органического соединения составляет скелет молекулы. Скелет может иметь открытую (незамкнутую) структуру, тогда соединение называют ациклическим (алифатическим; алифатические соединения называют также соединениями жирного ряда, т.к. они впервые были выделены из жиров), и замкнутую структуру, тогда его называют циклическим. Скелет может быть углеродным (состоять только из атомов углерода) либо содержать другие, отличные от углерода атомы - т. наз. гетероатомы, чаще всего кислород, азот и серу. Циклические соединения подразделяют на карбоцикличе-ские (углеродные), которые могут быть ароматическими и алициклическими (содержащими один или несколько циклов), и гетероциклические.

    Атомы водорода и галогенов в скелет не входят, а гетероатомы входят в скелет лишь в том случае, если они имеют, по меньшей мере, две связи с углеродом. Так, в этиловом спирте СН3СН2ОН атом кислорода не включён в скелет молекулы, а в диметиловом эфире СН3ОСН3 включён в него.

    Кроме того, ациклический скелет может быть неразветвлённым (все атомы расположены в один ряд) и разветвлённым. Иногда неразветвлённый скелет называют линейным, однако следует помнить, что структурные формулы, которыми мы чаще всего пользуемся, передают лишь порядок связи, а не реальное расположение атомов. Так, «линейная» углеродная цепь имеет зигзагообразную форму и может закручиваться в пространстве различными способами.

    В скелете молекулы различают четыре типа атомов углерода. Принято атом углерода называть первичным, если он образует только одну связь с другим атомом углерода. Вторичный атом связан с двумя другими атомами углерода, третичный - с тремя, а четвертичный все свои четыре связи затрачивает на образование связей с атомами углерода.

    Следующим классификационным признаком является наличие кратных связей. Органические соединения, содержащие только простые связи, называются насыщенными (предельными). Соединения, содержащие двойные или тройные связи, называются ненасыщенными (непредельными). В их молекулах на один атом углерода приходится меньшее число атомов водорода, чем в предельных. Циклические ненасыщенные углеводороды ряда бензола выделяют в отдельный класс ароматических соединений.

    Третьим классификационным признаком является наличие функциональных групп-групп атомов, характерных для данного класса соединений и определяющих его химические свойства. По количеству функциональных групп органические соединения делятся на монофункциональные - содержат одну функциональную группу, полифункциональные - содержат несколько функциональных групп, например глицерин, и гетерофунк-циональные - в одной молекуле несколько различных групп, например аминокислоты.

    В зависимости от того, у какого атома углерода находится функциональная группа, соединения делятся на первичные, например этилхлорид СН 3 СН 2 С1, вторичные - изопропилхлорид (СНз)2СНС1 и третичные - бутилхлорид (СН 8) 8 ССl.

    Похожие статьи